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Typical CMC Design for CSES
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Start with: 2D Axisymmetric Finite Models
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Next: 2D Plane Strain or 3D Strip FE Models
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CMC-Supported Embankment Project Locations

= Miami Dode Expressway
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Case Study: Rail Embankment — Burns Harbor; IN Case Study: Rail Embankment — Burns Harbor; IN
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Slope failure remediation for rail embankment widening

i i
Case Study: Rail Embankment — Burns Harbor, IN
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Case Study: Rail Embankment — Burns Harbor; | Case Study: CBIS 1-80 /1-29 / US-

Case Study: CBIS 1-80 / 1-29 / US-275 (97) — Sum

=

e Z = 4
+ 7 work areas 6 work areas
14,200 CMCs (519,000 If) - 11,500 CMCs (377,000 If)
+ 8 ASTM D1143 load tests + 5ASTM D1143 load tests
Design: CH2M « Design: CH2M

Quality Control: Rig Logs, CIT, Load Testing Case Study: CBIS 1-80 / 1-29 / US-275
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Column-Supported Embankments: Performance of CSE’s at Council Bluffs
Interchange System (CBIS)

Geo-Omaha 2018

Aaron Gallant, PhD, PE
University of Maine
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Subsurface arching and hang up effects
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Geosynthetic and LTP:

Embankment

Geosynthetic helps bride loads between
columns and reduce os applied to soil.

‘Membrane effect of
the geotextile
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After, Le Hello and Villard (2009)
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Le Hello, B., Villard, P. (2009). “Embankments reinforced by piles and geosynthetics-numerical and experimental <%
studies dealing with the transfer of load on the soil embankment.” Engincering Geology, 106, 78-91.

College of Engincering
31

2/9/2018

‘Why use column-supported embankments?

Stability

+ How is strength impacted by your
ground improvement?

+ Is strength gain time-dependent?

Choose Ground

*  Schedule

What are the time g IMprovement

constraints? Accordingly
*  Deformations
+ Are their constraints on allowable
deformations?
+ Are deformations time-dependent?
—
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Previous work

*  Soil arching theory

*  Performance

Less focus has been given to:
* Load in native ground at depth:
*  “Depth of stress influence™ between columns
*  “Ground improvement” due to installation method
*  Predicting settlements
*  Necessity of geosynthetic reinforcement

* Lots of work has been done to investigate:

*  Vertical stresses applied to native ground at original ground surface
+  Stresses in geosyntheic reinforcement

* Reliability of design has improved, though still based largely on empirical design.
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Project Location: Council Bluffs Interchange System (CBIS)
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Subsurface Conditions
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Instrumentation Details
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Performance: Measured vs. Estimated Settlement (w/out columns)
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Performance: Settlement vs. Load
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SRR (2)
05

Inferred Stress Changes in Clay (from extensometers)
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FEA Model: Investigating influence of soil-column interaction
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Computed Settlement Contours: FEA (S = 1.83m)
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Computed and measured subsurface deformations
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Computed influence of soil-column interaction on settlement
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Influence of Geosynthetic and LTP Influence of Geosynthetic and LTP
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Influence of column installation: Load Test Comparison Installation: Grouted Rigid Inclusions with Drilled Displacement Tool
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Load Test Comparison

Clay: 0-33m

*Assumes S, = 50 kPa
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Final Remarks:
1. Soil-column interaction and hang up effects reduce load in native

ground at depth, and contribute to the efficacy of settlement reduction.

2. The efficacy of settlement reduction increases with clay thickness
due to limited influence of embankment stress in clay at depth.

3. Load tests indicate increases in side resistance due to installation
effects.
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