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Column Supported Embankments: 
Applications and examination of 
installation effects and soil-column 
interaction on system efficacy
Kyle Shatzer, PE, Menard USA

Aaron Gallant, PhD, PE, University of Maine

• Introduction to Menard

• Controlled Modulus Columns (CMCs)

• Typical CMC Design for CSES

• Case Studies

• Rail embankment slope failure and remediation, Burns 
Harbor, IN

• Council Bluffs Interstate System (CBIS) – I-80 / I-29 / US-
275, Council Bluffs, IA

• CBIS research: Applications and examination of 
installation effects and soil-column interaction on system 
efficacy

Overview

No, not that “Menards” Menard USA Office Locations

Soletanche Freyssinet Group Controlled Modulus Column (CMC)
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Typical CMC Design for CSES Start with: 2D Axisymmetric Finite Models

Next: 2D Plane Strain or 3D Strip FE Models 2D Plane Strain or 3D Strip FE Models

Finally: Check stability with SLIDE CMC-Supported Embankment Project Locations
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Case Study: Rail Embankment – Burns Harbor, IN

Slope failure remediation for rail embankment widening

Case Study: Rail Embankment – Burns Harbor, IN

Slope failure remediation for rail embankment widening

Case Study: Rail Embankment – Burns Harbor, IN Case Study: Rail Embankment – Burns Harbor, IN

Case Study: Rail Embankment – Burns Harbor, IN Case Study: Rail Embankment – Burns Harbor, IN
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Case Study: Rail Embankment – Burns Harbor, IN Case Study: CBIS I-80 / I-29 / US-275

Case Study: CBIS I-80 / I-29 / US-275 (97) – Summer 2014

• 7 work areas

• 14,200 CMCs (519,000 lf)

• 8 ASTM D1143 load tests

• Design: CH2M

Case Study: CBIS I-80 / I-29 / US-275

(97) Contract – 2014 – Hawkins (102) Contract – 2015 – Ames

• 6 work areas

• 11,500 CMCs (377,000 lf)

• 5 ASTM D1143 load tests

• Design: CH2M

Quality Control: Rig Logs, CIT, Load Testing Case Study: CBIS I-80 / I-29 / US-275
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Column-Supported Embankments: Performance of CSE’s at Council Bluffs 
Interchange System (CBIS)

Aaron Gallant, PhD, PE
University of Maine
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Geosynthetic and LTP:
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Embankment

Geosynthetic helps bride loads between 
columns and reduce s applied to soil.

Settlement

Tension

After, Le Hello and Villard (2009)

Le Hello, B., Villard, P. (2009). “Embankments reinforced by piles and geosynthetics-numerical and experimental 
studies dealing with the transfer of load on the soil embankment.” Engineering Geology, 106, 78-91.

Why use column-supported embankments?
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• Schedule
What are the time 
constraints?

• Deformations
• Are their constraints on allowable 

deformations?
• Are deformations time-dependent?

• Stability
• How is strength impacted by your 

ground improvement?
• Is strength gain time-dependent?

Choose Ground 
Improvement 
Accordingly

Previous work
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• Lots of work has been done to investigate:
• Soil arching theory
• Vertical stresses applied to native ground at original ground surface
• Stresses in geosyntheic reinforcement
• Performance

• Reliability of design has improved, though still based largely on empirical design.

• Less focus has been given to:
• Load in native ground at depth:

• “Depth of stress influence” between columns
• “Ground improvement” due to installation method
• Predicting settlements
• Necessity of geosynthetic reinforcement

Project Location: Council Bluffs Interchange System (CBIS)
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𝐸ఋ = 1 −
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𝛿ே஼

Efficacy of settlement reduction

Subsurface deformations (s = 1.83m)
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North South

Inferred Stress Changes in Clay (from extensometers)
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FEA Model: Investigating influence of soil-column interaction
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Note:
1.) H=fill height
2.) Field deformations are measured relative to D = 15.2m
3.) FEA (column-soil interface shear strength in clay)
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Note:
1.) H=fill height
2.) Field deformations are measured relative to D = 15.2m
3.) FEA (column-soil interface shear strength in clay)
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Computed influence of soil-column interaction on settlement
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Influence of Geosynthetic and LTP
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Influence of Geosynthetic and LTP
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Influence of column installation: Load Test Comparison
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Test 1: Single Column

Test 2: Multiple Columns

Test Column

Test Column

Test 
Column

Surrounding 
columns being 

installed

Installation: Grouted Rigid Inclusions with Drilled Displacement Tool
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from Coduto et al. (2016)

Coduto, D.P, Kitch, W.A., Yeung, M.R. (2016). “Foundation Design: Principles and Practices.” Pearson Education, 
Inc., Upper Saddle River, NJ.

Load Test Comparison and interpreted side friction
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Load Test Comparison and interpreted side friction
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Load Test Comparison
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Coleman, D.M. and Arcement, B.J. (2002). “Evaluation of Design Methods for Auger Cast Piles in Mixed Soil Conditions,” 
Proceedings of the International Deep Foundations Congress 2002, February 14-16, 2002 Orlando, Florida; M.W. O’Neill 
and F.C. Townsend (Eds.), ASCE, pp. 1404–1420.

ACIP Piles (not DD piles) Final Remarks:
1. Soil-column interaction and hang up effects reduce load in native 
ground at depth, and contribute to the efficacy of settlement reduction.

2. The efficacy of settlement reduction increases with clay thickness 
due to limited influence of embankment stress in clay at depth. 

3. Load tests indicate increases in side resistance due to installation 
effects.
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Thank You
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