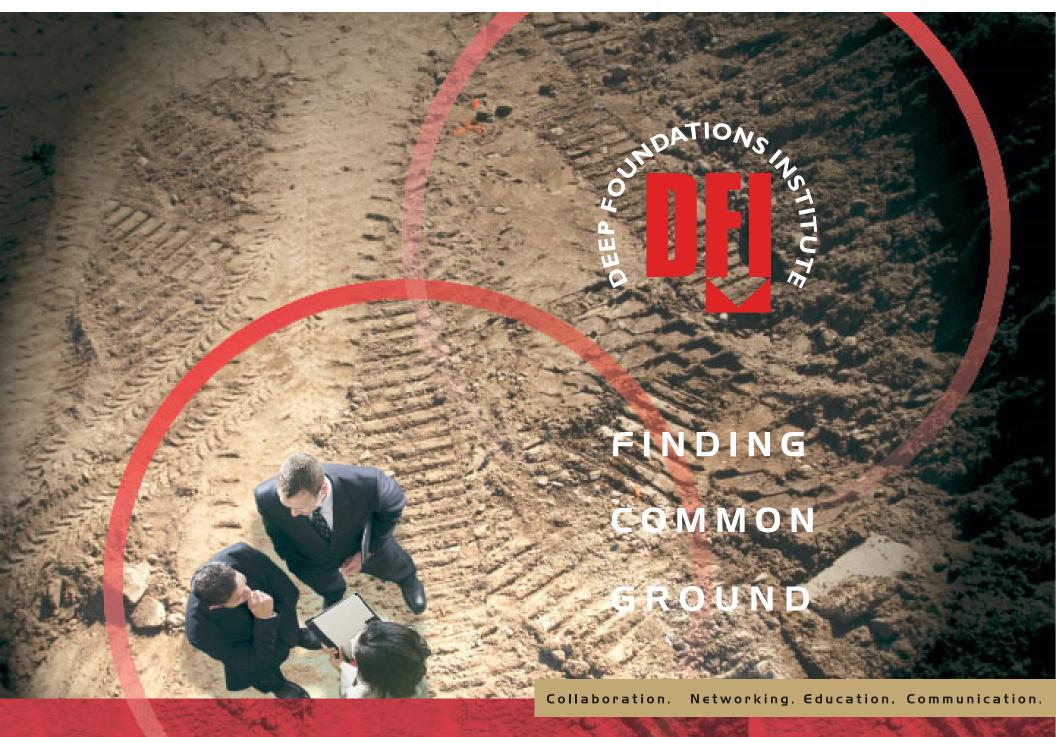
The Application of Cast-in-Place Piles in Intermediate Geomaterials

Presented by: W. Morgan NeSmith, PE

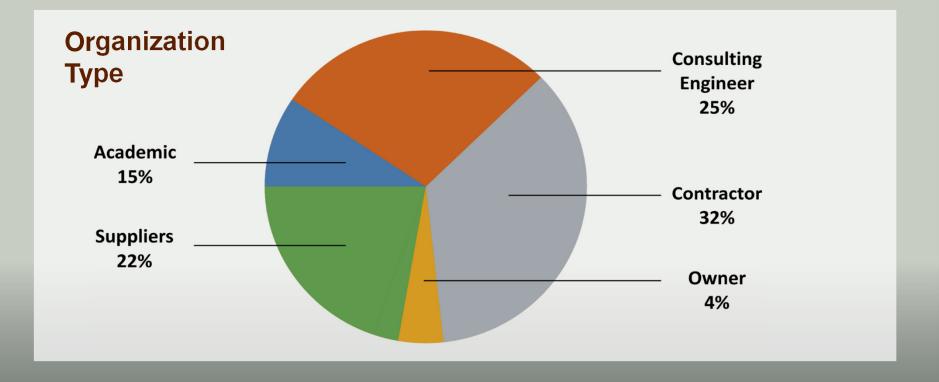
Director of Engineering



morgan@berkelandcompany.com http://www.berkelandcompany.com

™ GEO-Omaha 2021 02 05

DFI Mission


To bring together multi-disciplined individuals and organizations to find common ground and create a shared vision and a consensus voice for continual advancement in the deep foundations industry.

Collaboration. Networking. Education. Communication.

Finding Common Ground

An International Association of Multidisciplinary Members

FIND COMMON GROUND.

BECOME A MEMBER.

DFI Technical Committees and Working Groups

- Micropiles (Joint w/ ADSC)
 - International Society for Micropiles
 - Project Information Management Systems
 - Risk and Contracts
 - Seepage Control Working Group
 - Seismic and Lateral Loads
 - Slurry Walls
 - Soil Mixing
 - Subsurface Characterization
- Sustainability
- Testing and Evaluation
- Monitoring & Instrumentation (Europe)
- Tunneling and Underground
- Women in Deep Foundations
- Industry Wide Risk Working Group
- Industry Wide Working Platforms

Collaboration. Networking. Education. Communication.

Technical Committees

- Anchored Earth Retention (Joint w/ ADSC)
- Augered Cast-in-Place Piles (CFA Piles)
- **BIM/Digitalisation (Europe)**
- Codes and Standards
- Deep Foundations for Landslides and Slope Stabilization
- Driven Piles
- Drilled Shafts
- Electric Power System Foundations
- Energy Foundations
- Ground Improvement
- Helical Foundations and Tiebacks
- International Grouting
- Manufacturers, Suppliers and Service Providers
- Marine Foundations

http://www.dfi.org/dfievents.asp

May 10-14, 2021 Dallas, Texas	International Foundations Congress and Equipment Exposition		
June 1-17, 2021 ONLINE CONFERENCE	Deep Mixing 2021		
June 23-25, 2021 Philadelphia, Pennsylvania	SuperPile 2021		
July 26, 2021 Pittsburgh, Pennsylvania	DFI Educational Trust Pennsylvania Golf Outing		
August, 2021 Royce Brook Golf Club, Hillsborough, New	2021 ACE Mentor Program & DFI Educational Trust NJ Golf Outing	November 2021 Cairo, Egypt	DFI Middle East Workshop at GeoMEast2021
Jersey August 3-5, 2021	 S3: Slopes, Slides and Stabilization DFI Educational Trust Annual California Golf Outing 	November 4, 2021 Corona, New York	DFI Educational Trust 15 th Annual Gala
San Francisco, California September 2021		November 8-11, 2021 Austin, Texas	International Symposium on Frontiers in Offshore Geotechnics
Dublin, California		November 12-15, 2021	DFI Middle East Geotechnical Engineering Summit
October 12-15, 2021 Las Vegas, Nevada	46 th Annual Conference on Deep Foundations	Dubai, UAE	at The Big 5 Heavy
		Nov. 18-20, 2021 Subject to Change Chennai, Tamil Nadu, India	DFI-India 2021: 10 th Anniversary Conference on Deep Foundation Technologies for Infrastructure Development in India
		February 13-16, 2022 New Orleans, Louisiana	6 th International Conference on Grouting & Deep Mixing
		February 23-25, 2022 Sydney, Australia	DFI-PFSF Piling & Ground Improvement Conference
		May 18-20, 2022 Berlin, Germany	DFI-EFFC International Conference on Deep Foundations and Ground Improvement: Smart Construction for the Future

Scope of Presentation

Evolution of Augered Cast-in-Place Pilling Equipment and Processes


What is an "Intermediate Geomaterial" (IGM)

Example Applications

Auger Pressure Grouted (APG) Pile System

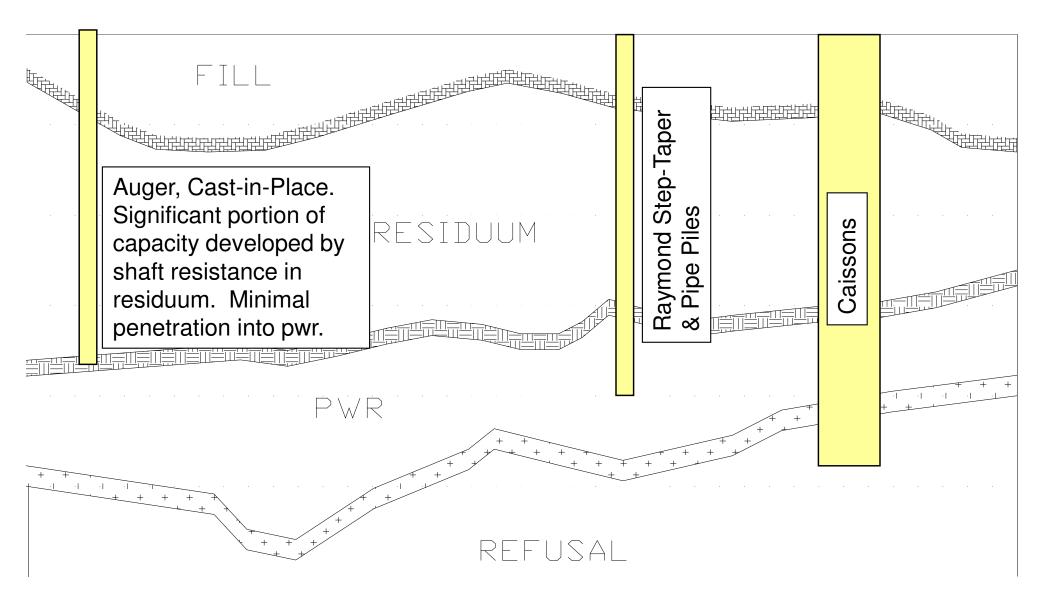
- Cast-in-place piles grew out of pressuregrouting processes at Intrusion-Prepakt, late 1940s, early 1950s
- Patent granted to Raymond Patterson for construction of cast-in-place piles by pumping grout through a hollow-stem auger.
- Licenses granted to Lee Truzillo and Charles Berkel

"The Evolution of Cast in Place Piles" November/December 2013 DFI Magazine

STATE OF THE ACIP INDUSTRY early 1960s

- Augers advanced by power units that developed +- 15,000 ft-lbs
- On-site grout batching using bagged cement, fly ash and grouting agent, and masonry sand (to allow grout to be pumped by pneumatic powered piston pumps)
- Consistent production of 3000 psi grout was a challenge (fine masonry sand)
- Installation of 500 linear feet of piling in a single day was considered a great accomplishment.

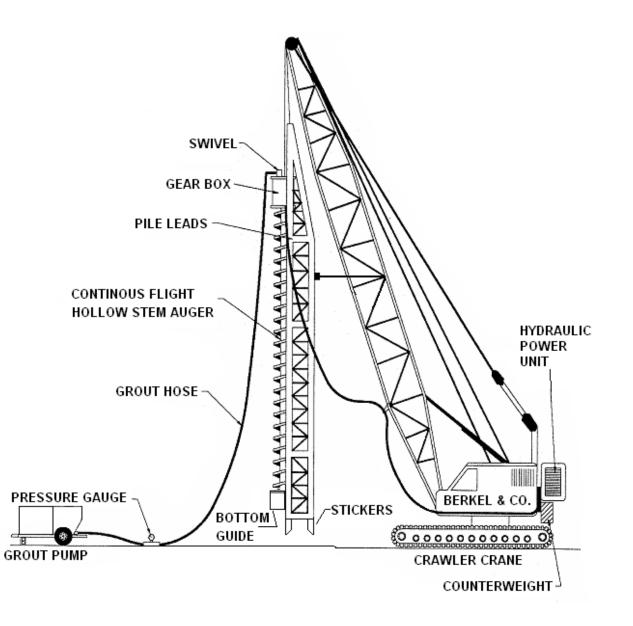
STATE OF THE DEEP FOUNDATION INDUSTRY EARLY 1960S

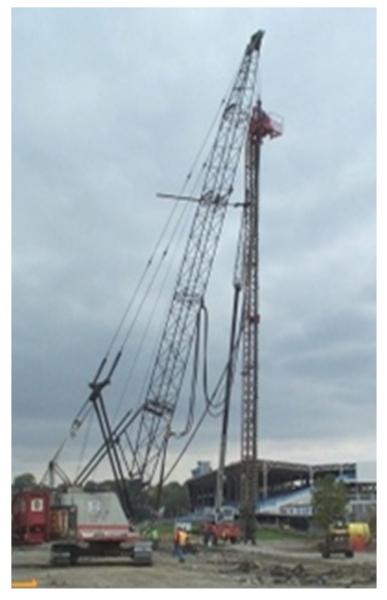

- Deep foundations for most major structures are either driven piles or drilled shafts
- Raymond Concrete Pile Company has offices throughout the U.S.

STATE OF THE ACIP INDUSTRY1970s

- Augers advanced by power units that developed +-30,000 ft-lbs
- ASTM C-33 sand used in grout mixes
- Higher volume, more powerful pumps are available
- Redi-mix grout common.
- Original patent for ACIP piles expires – new installers enter the market

Piedmont Physiographic Profile Deep Foundation Approach [1970's]




ACIP Piles in the1980s

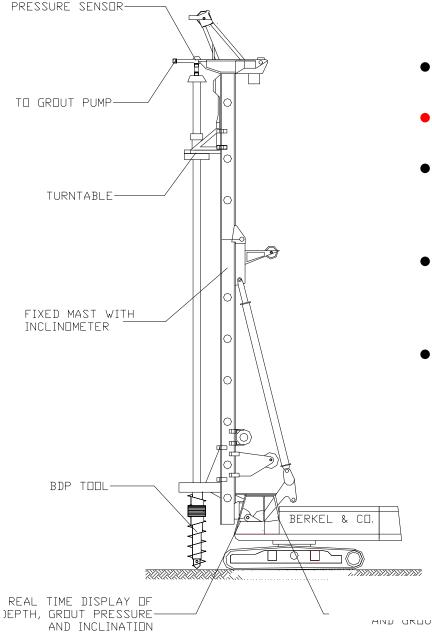
- Substantial knowledge base in the Geotechnical Community.
- Continued advancement of installation platforms and grout delivery systems leads to application in a wider variety of geologic settings.
- Application in Intermediate Geomaterials
 Miami Rapid Transit System-Piles in soft limestone
 - Georgia World Congress Center-Piles in partially weathered rock
 - Conventional Crane-Mounted Equipment

Crane-Supported ACIP Pile Rig

Stem Rotation Proximity Sensor

Grout Pressure Transducer

Inclinometer

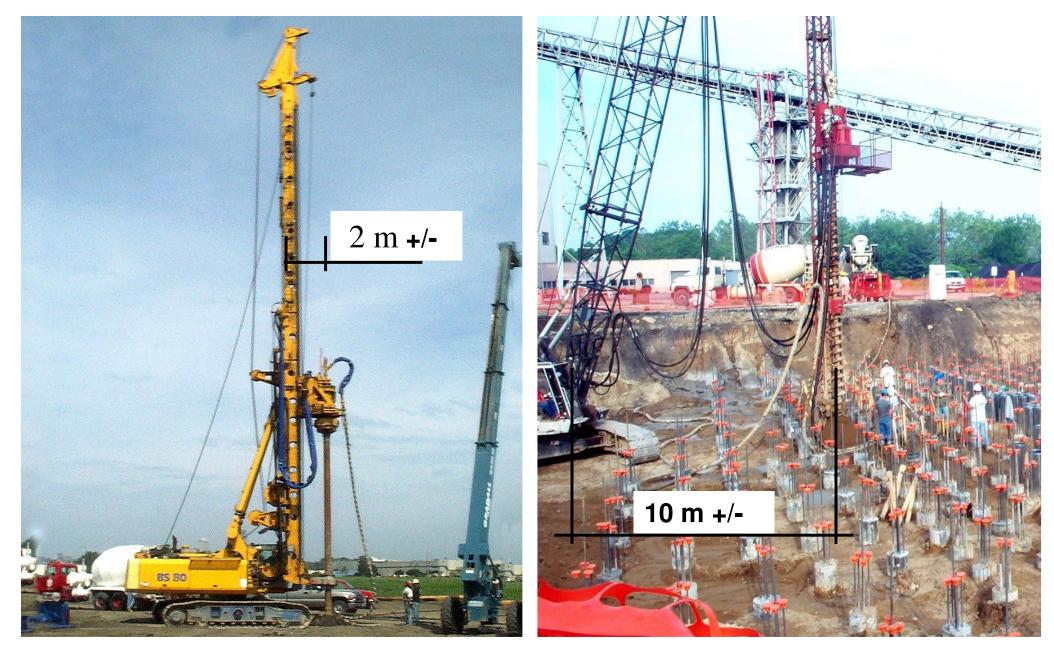

Fixed Mast Platforms

Main Wench Proximity Sensor (Depth)

Hydraulic Fluid (turntable) Pressure Sensor

B', 80

INSTALLATION PLATFORM



- 150,00 to 200,000+ ft-lb torque
- 40,000 to 80,000+ lb crowd
- Fixed mast for stability, inclinometer with display in operator's compartment
- Grout pressure, measured at top of tools, is displayed in operator's compartment
- Real-time display of installation parameters (depth, KDK pressure, Installation Effort, grout pressure) pressure

Primary Drilling Parameters (Recorded at 1 Reading per Second)

- <u>Time</u>: Recorded by an internal counter and referenced to the initial date and time input by the operator at the beginning of the project.
- <u>Depth</u>: From proximity switch that measures rotation of the main winch supporting the drilling turntable and drilling tools.
- <u>Hydraulic Fluid Pressure driving turntable</u> (i.e. KDK Pressure): From in-line pressure transducer.
- <u>Rotations</u> (of drilling tools): From proximity switch on turntable.

On-Site Logistics Considerations

Fixed-Mast Piling Rig

APG Crane-Mounted Rig

Fixed Mast Auger Stem

TERMINOLOGY

<u>GEC #8</u>

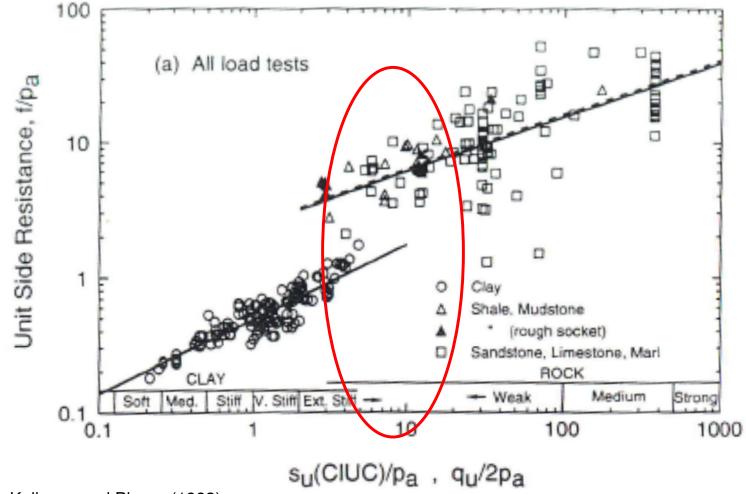
1.1 PURPOSE

The purpose of this document is to develop a state-of-the-practice manual for the design and construction of continuous flight auger (CFA) piles, including those piles commonly referred to as augered cast-in-place (ACIP) piles, drilled displacement (DD) piles, and screw piles. An Basically, any system for installing cast-in-place piles by a single-pass, rotary drilling process is a "CFA" pile.

DFI

<u>Augered-Cast-in-Place (ACIP) Piles</u>, a.k.a. Augercast, Auger Pressure-Grouted Piles-Piles installed by single-pass, rotary drilling processes where the tooling includes a continuous flight auger.

Drilled Displacement (DD) Piles, Propriety names Berkel Displacement Piles, DeWaal, Omega-Piles installed by single-pass, rotary drilling processes where the tooling includes a displacing element that creates a cylindrical pile of more or less uniform diameter.


What are Intermediate Geomaterials?

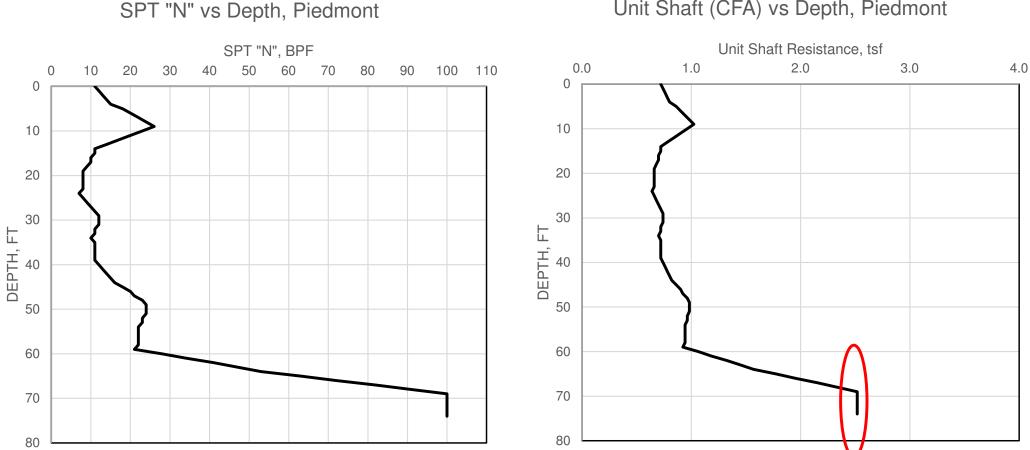
- (a) Cohesive soil (clay or plastic silt with $s_u < 0.25$ MPa (+- 2.5 tsf)
- (b) Granular Soil (sand, gravel or non-plastic silt with N_{avg} < 50 blows.0.3 m)
- (c) Intermediate Geomaterials
 - (a) Cohesive: clay shales or mudstones with .025 MPa (2.5 tsf) < s_u <2.5 MPa (25 tsf)
 - (b) Cohesionless: granular tills, granular residual soils with N>50 B/0.3 m
- (d) Rock [cohesive, cemented geomaterial with s_u >2.5 MPa (25 tsf) or q_u > 5.0 MPa (50 tsf)]

Source: U.S. Department of Transportation, FHWA-IF-99-025, Vol. II, p 266

Side Resistance in Soft Rock

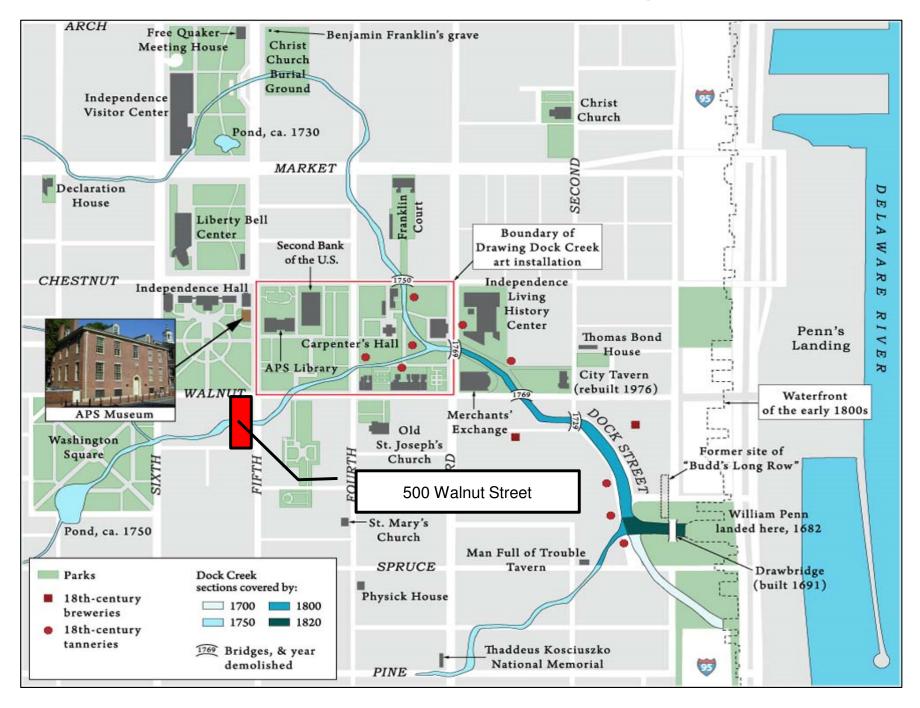

Ref: Kulhawy and Phoon (1993)

Types of IGMs

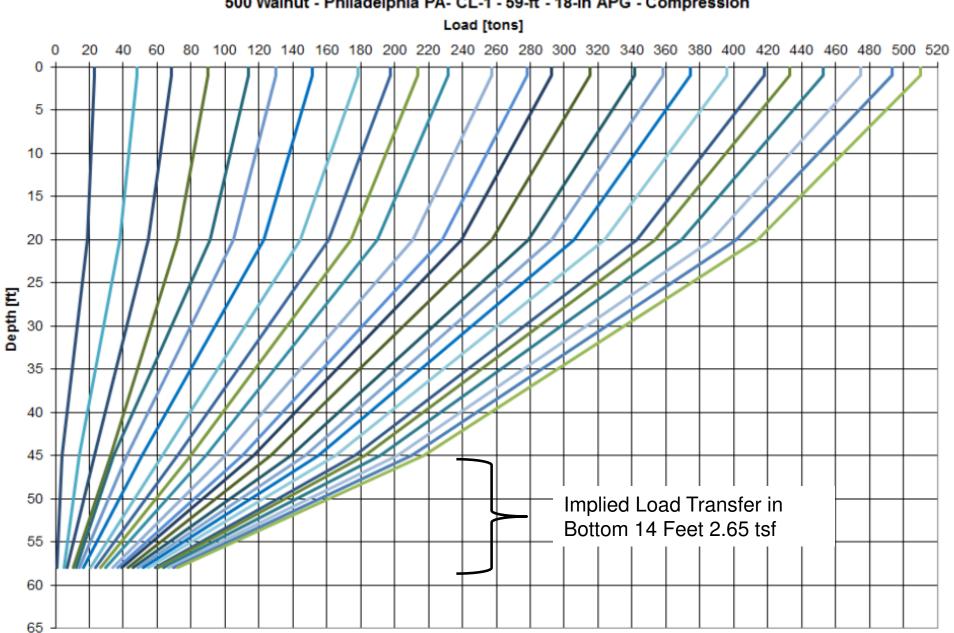

- Materials that were on their way to becoming rock but were not indurated to the point that they could be classified as "rock".
 [Soft limestone, Mudstone, Clay Shale]
- Materials that were once rock but have been weathered to the point that they have lost some of their rock characteristics.
 Residual materials [Partially Weathered Rock, Altered Rock]
- Materials that have been acted upon by physical or physiochemical processes that cause them to meet the criteria for IGMs. [Till, Marl]

A common feature among IGMs is difficulty in obtaining boring data and samples that accurately reflect the character of the in-situ mass

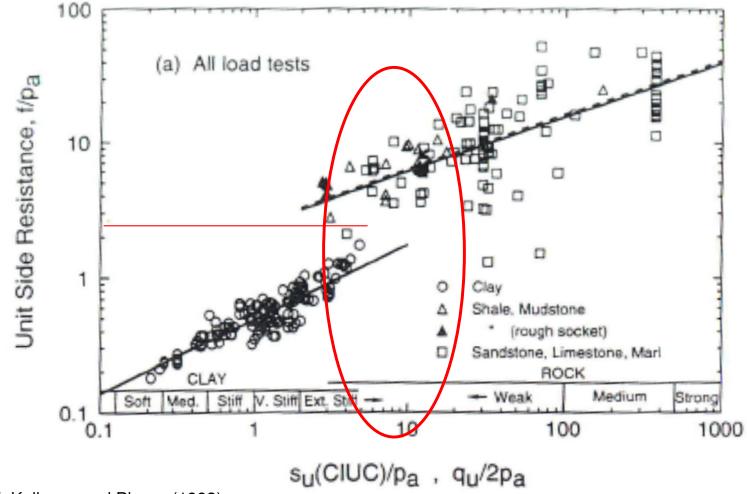
Partially Weathered Rock Piedmont Profile Deep Foundation Approach 1990's



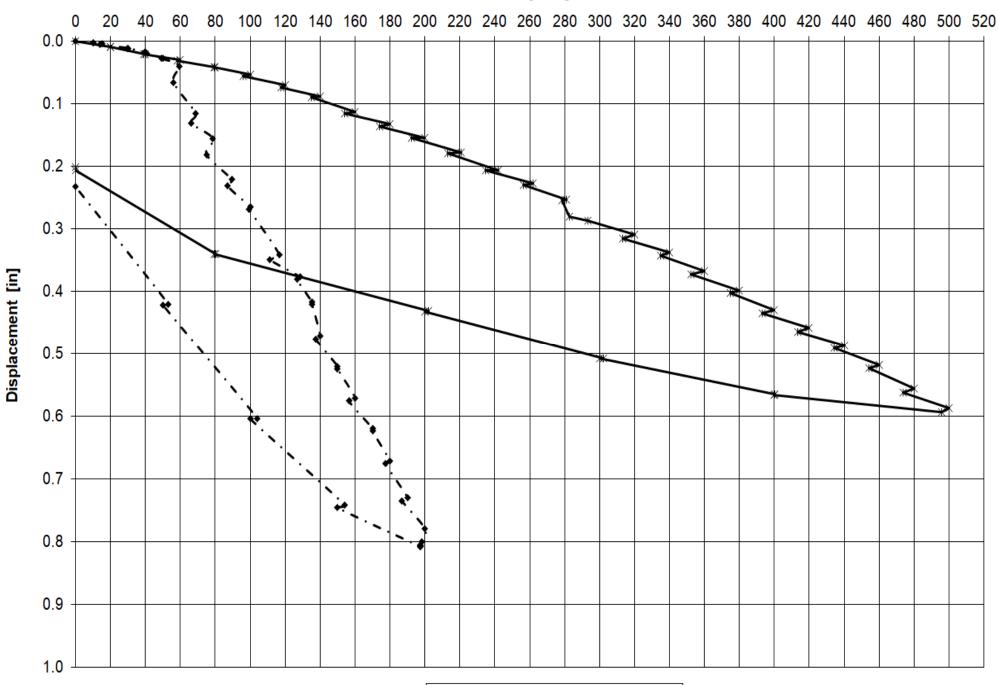
Benefit of Penetrating PWR?


Unit Shaft (CFA) vs Depth, Piedmont

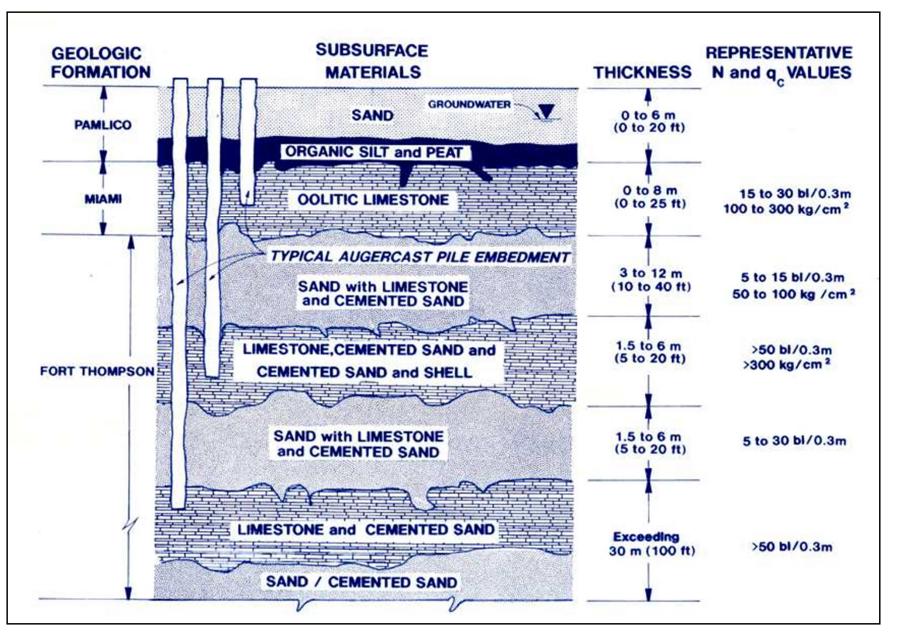
500 Walnut St, Philadelphia


0	Approximate Ground Surface / Street Level	0 feet
5		
10	Fill / Urban Fill	
15	Sand, silt, and gravel blend with miscellaneous demolition debris (brick, conc SPT N-Values: 4 bpf to >100 bpf; avg of 38 bpf (skewed due to oversized mat	
20	Building Basement Level	
	∇	±23 feet
25	Stratum A - Fluvial Soil - Fine to Coarse Sand, little silt, trace to little gravel SPT N-Values: 8 bpf to 66 bpf; avg. 25 bpf	
30		±32 feet
35	Stratum B - Fluvial Soil - Clayey silt, trace organic matter, seams of fine to me SPT N-Values: WOH to 14 bpf; avg. 7 bpf	dium sand
40	Unconfined Compressive Strength (Pocket Penetrometer): 0 to 0.5 tsf	±42 feet
45 50	Stratum C - Alluvial Soil - Fine to coarse sand, trace silt and gravel SPT N-Values: 4 bpf to 40 bpf; avg. 25 bpf	
55		±55 feet
60	Stratum D - Alluvial Soil - Coarse to fine sand and gravel, trace silt SPT N-Values: 33 bpf to >100 bpf; avg. 70 bpf	
65		
70	APG Pile (Typ.	
75	iid 9dV	
80		±78 feet
85	Stratum E - Decomposed Rock & Weathered Rock - Micaceous f to c sand, tra SPT N-Values: 63 bpf to 89 bpf; avg. 70 bpf *Altered Rock* >100 bpf; <40 RQD	
90	L	±90 feet
95	Intact Rock RQD = >40 UC = 1,990 psi to 3,190 psi	
100	, FF	±100 feet

Depth (ft)

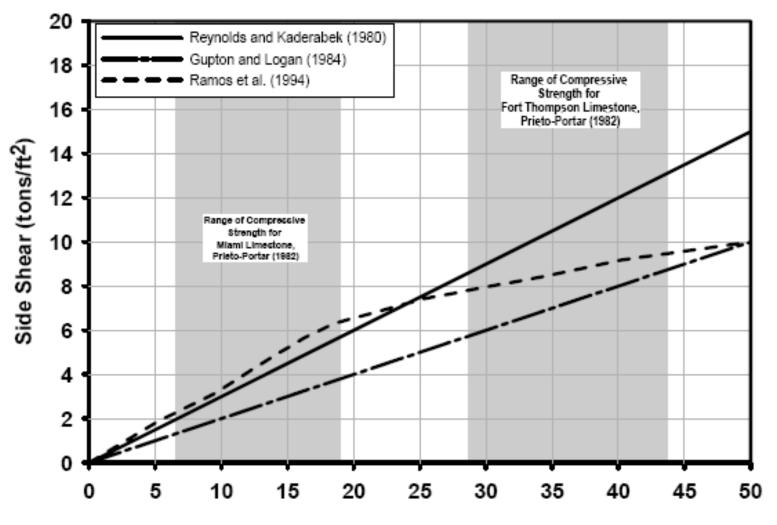

Load Distribution Chart 500 Walnut - Philadelphia PA- CL-1 - 59-ft - 18-in APG - Compression

Side Resistance in Soft Rock



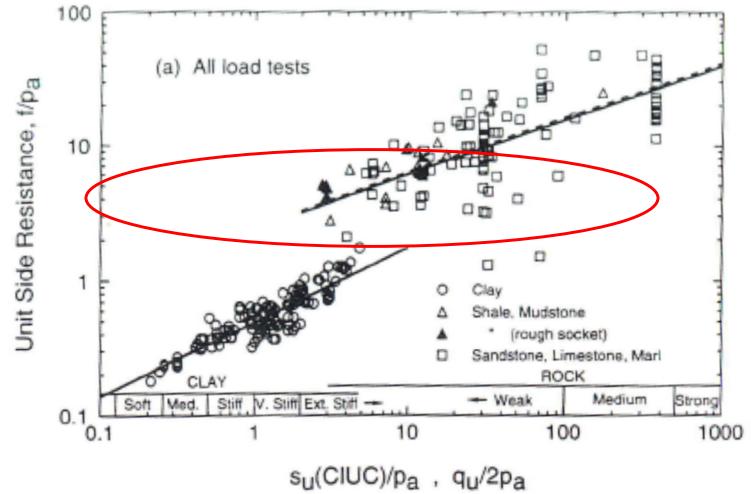
Ref: Kulhawy and Phoon (1993)

Load [tons]


Soft Rock Subsurface Profile, South Florida

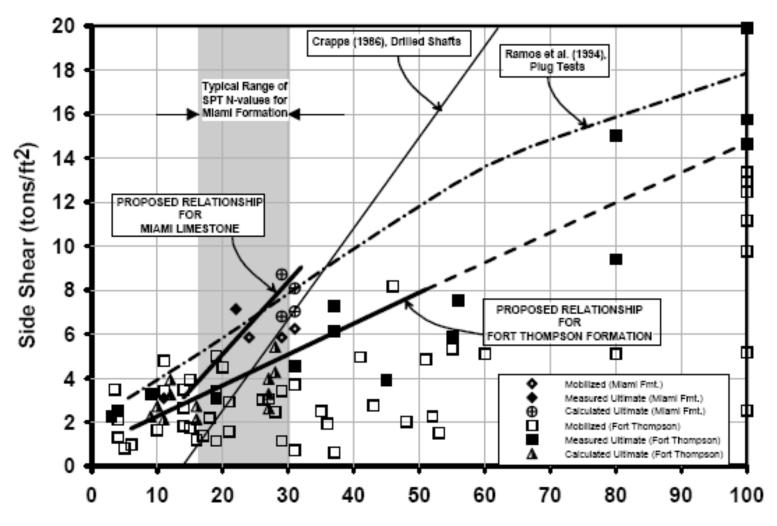
Ref: Frizzi & Meyer (2000)

Shaft Resistance

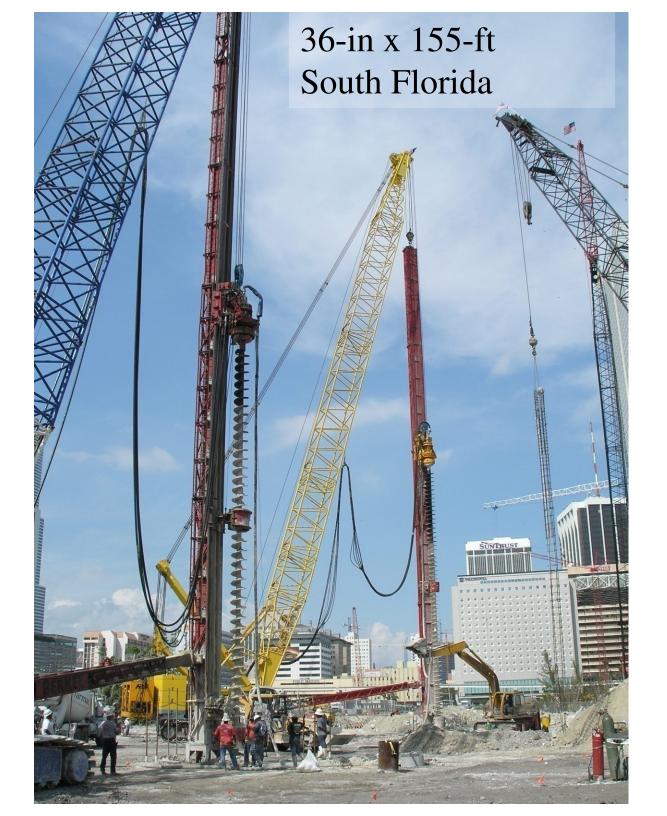

South Florida Limestone Experience

Unconfined Compressive Strength (tons/ft2)

Source: Frizzi and Meyer (2000)


Side Resistance in Soft Rock

Ref: Kulhawy and Phoon (1993)


Shaft Resistance

South Florida Limestone Experience

Standard Penetration Test N-value (blws/0.3 m)

Source: Frizzi and Meyer (2000)

Cutting Head for IGM Application

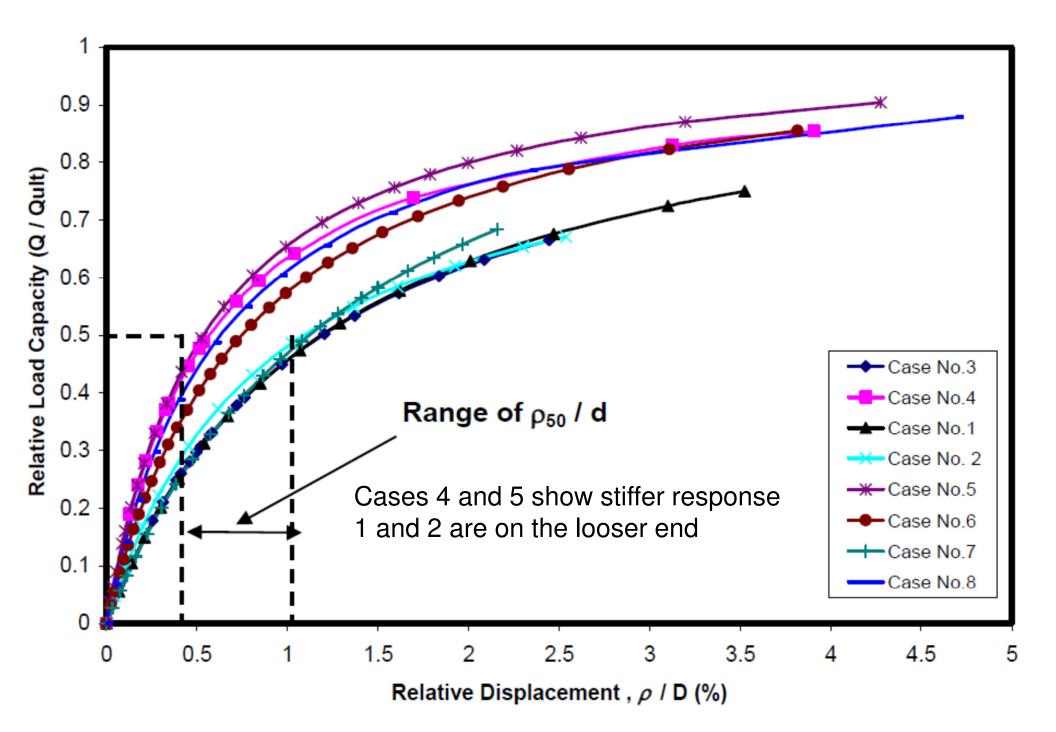
Shale

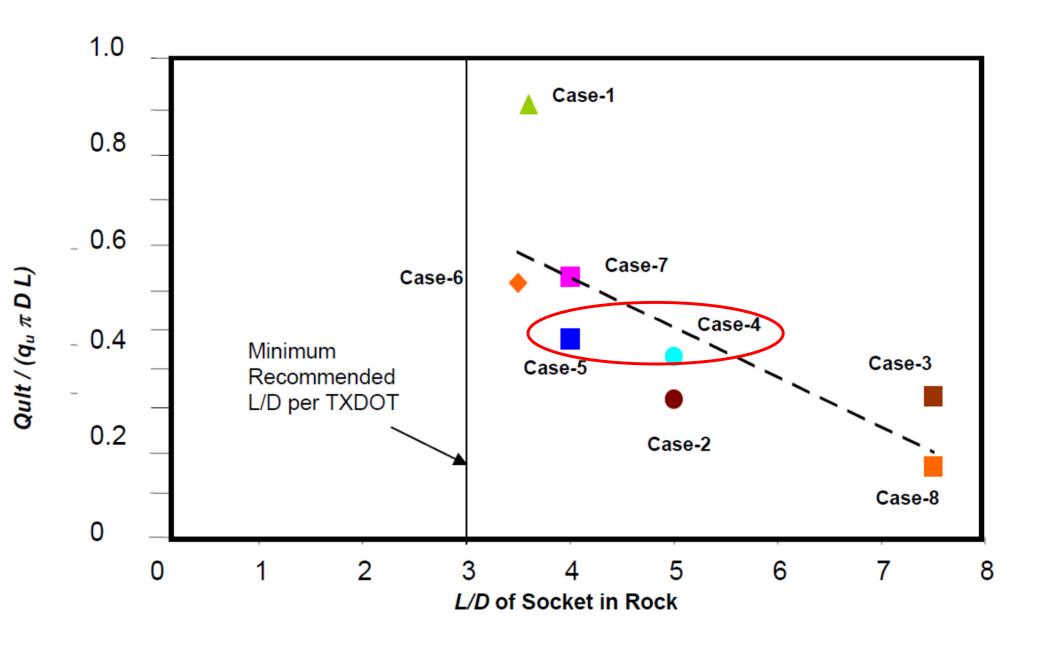
Highly Dependent on Local Geology

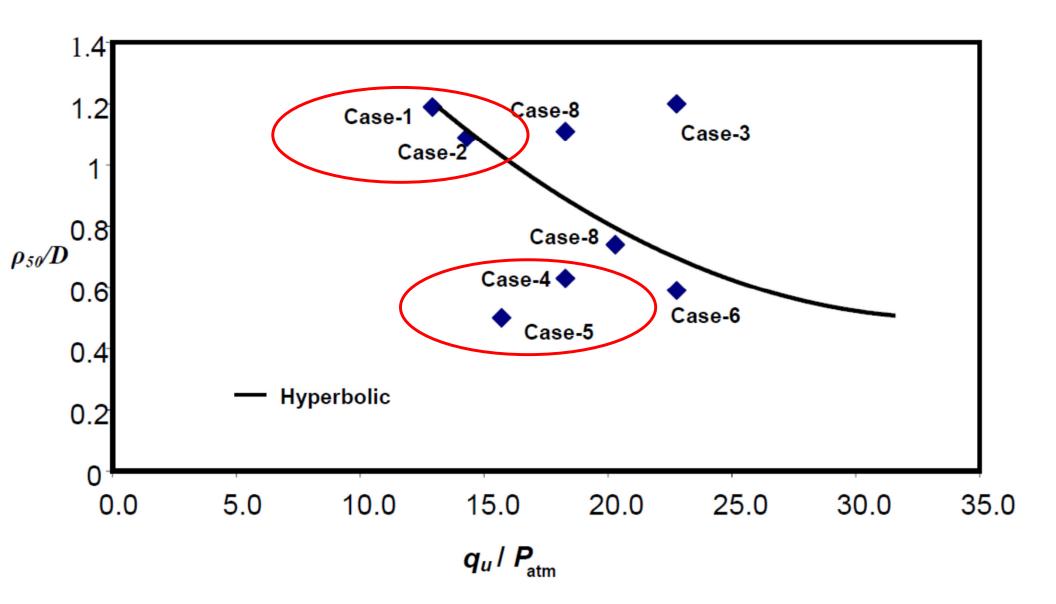
May or May Not Have a Transitional (Weathered) Zone

May be Fissile or Thick Bedded

Highly Variable Strength


May be Interbedded with (Hard) Limestone and/or Sandstone


Good Place To Start (Shales)?


GEC-8, Section 5.3.3.3. From Vipulamamdan 2005 Paper.

Method described is based on results of 8 load tests on ACIP piles socketed into clay-shale with qu ranging from 1 to 30 tsf.

Capacity is given in terms of pile head displacement.

Shale Example

Assume a 1.5 ft diameter (D) pile drilled 4.5 ft (L) into clay shale with qu =20 tsf. So L=3D.

$$\frac{\rho_{50}}{D} [\text{in \%}] = \frac{15.8}{\frac{q_u}{P_{atm}}} \qquad (\text{Equation 5.27})$$

$$for \text{ ratio } q_u / P_{atm} = 20;$$

$$\text{Equation 5.27 results } \rho_{50} / D = 0.79\%.$$

$$\frac{Q_{uh}}{q_u \pi D L} = -0.11 \frac{L}{D} + 0.96 \qquad (\text{Equation 5.26})$$

 $Q_u = q_u \pi D L (-0.11 \times L/D + 0.96) = 20 \times 3.14 \times 1.5 \times 4.5 (-0.11 \times 3 + 0.96) = 267$ tons.

Shale Example (continued)

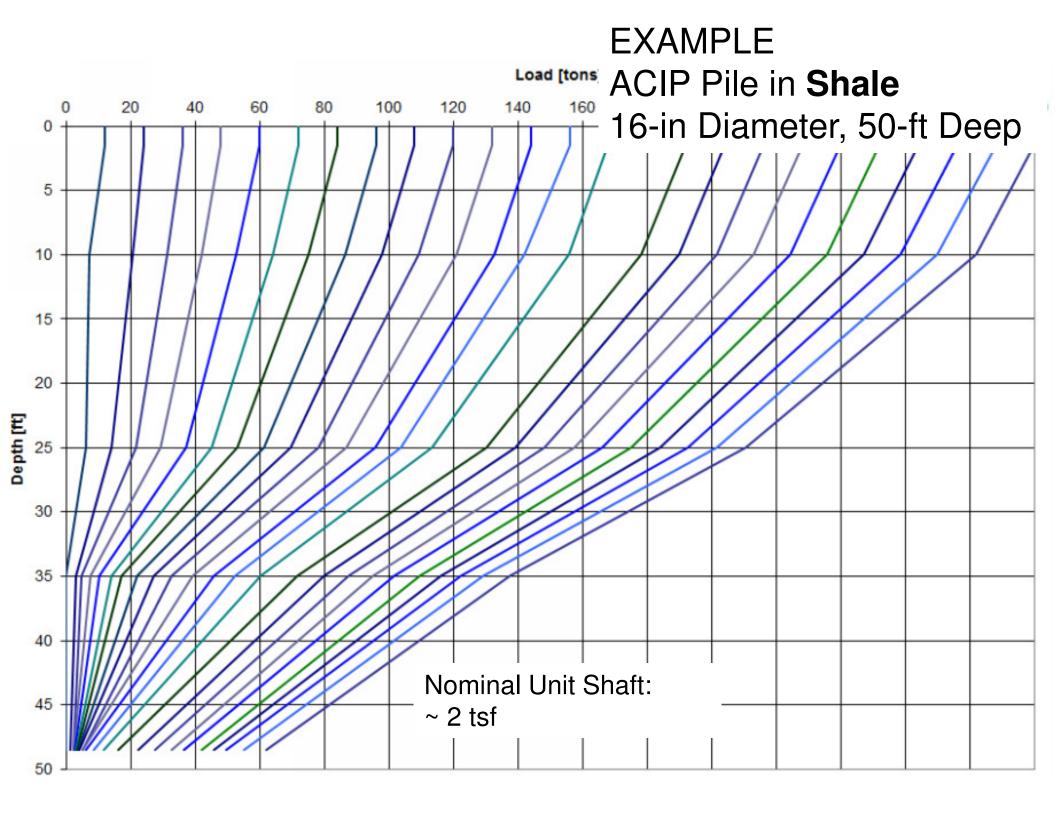
Take a pile head displacement of 0.25" and use Equation 5.25 to calculate the mobilized load capacity at that displacement

$$\frac{Q}{Q_{ult}} = \frac{\frac{\rho}{D}}{\frac{\rho_{50}}{D} + \frac{\rho}{D}} \quad \text{(Equation 5.25)}$$

$$Q = Q_{ult} [\rho/D \div (\rho_{50}/D + \rho/D)] =$$

 $= 267 \times [0.25/18 \div (0.0079 + 0.25/18)] = 0.64 \times 267 = 170$ tons.

Ultimate capacity of 267 tons. Mobilized capacity with pile head movement of 0.25 in, 170 tons.


No need to consider (worry about) what the toe contribution is. It's built in. Designer selects the level of pile head movement for conditions.

Shaft Resistance

FHWA Micropiles Guidelines

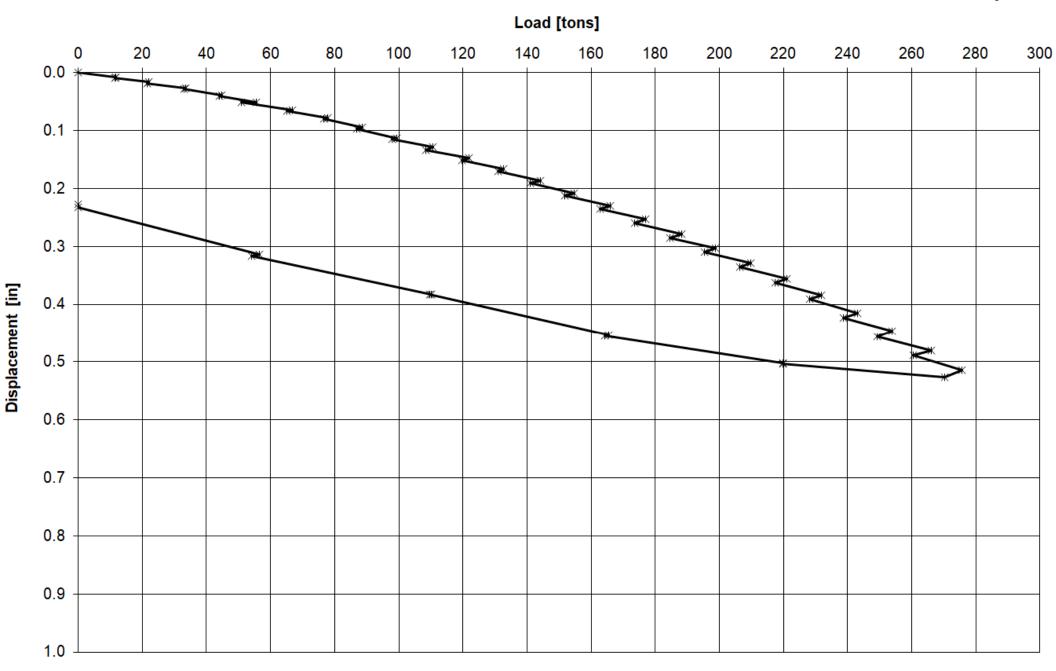
	Typical Range of Grout-to-Ground Bond Nominal Strengths (kPa)										
Soil / Rock Description	Type A	Type B	Туре С	Туре D							
Silt & Clay (some sand) (soft, medium plastic)	35-70	35-95	50-120	50-145							
Silt & Clay (some sand) (stiff, dense to very dense)	50-120	70-190	95-190	95-190							
Sand (some silt) (fine, loose-medium dense)	70-145	70-190	95-190	95-240							
Sand (some silt, gravel) (fine-coarse, medvery dense)	95-215	120-360	145-360	145-385							
Gravel (some sand) (medium-very dense)	95-265	120-360	145-360	145-385							
Glacial Till (silt, sand, gravel) (medium-very dense, cemented)	95-190	95-310	120-310	120-335							
Soft Shales (fresh-moderate fracturing little to no weathering)	205-550	N/A	N/A	N/A							
Slates and Hard Shales (fresh-moderate fracturing, little to no weathering)	515-1,380	N/A	N/A	N/A							
Limestone (fresh-moderate fracturing, little to no weathering)	1,035-2,070	N/A	N/A	N/A							
Sandstone (fresh-moderate fracturing, little to no weathering)	520-1,725	N/A	N/A	N/A							
Granite and Basalt (fresh-moderate fracturing, little to no weathering)	1,380-4,200	N/A	N/A	N/A							

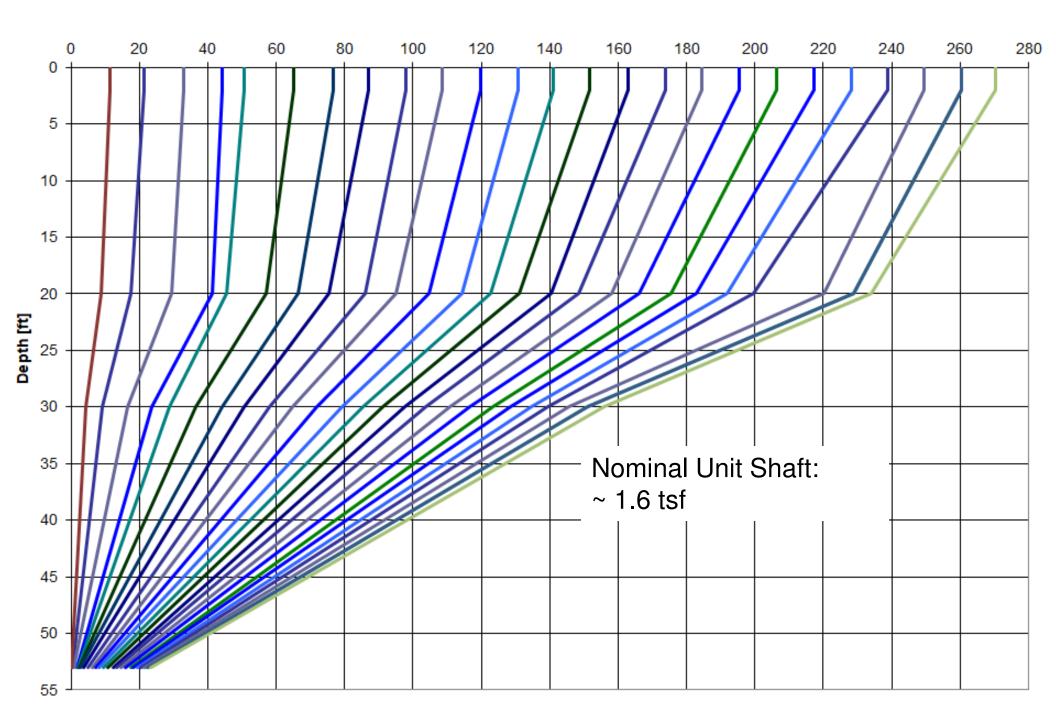
ELEVATION (ft) 1220	Shelby Tube Split Spoon MATERIAL DESCRIPTION APPROX. SURFACE ELEV. (ft): 1570.5 DEVELOPED ZONE ALTERED PEORIA LOESS 0.4*	GRAPHIC	o DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE RQD	UNC. STR. (tsf)	MOISTURE	DRY DENSITY (pcf)	(%)	ADDITIC DAT, REMAN		EXAI ACIP 6-in	P Pile	e i						·Г	٦ر	an
	Lean to fat clay (CL/CH) Firm, dark brown, very moist, mostly lean to fat clay			U 1			0.7	28.4	93.4				Shale					-					ep
	PEORIA LOESS 3.5'			U							s s	ihelby Tube	5	t Spoon							•		
1565	Lean clay (CL) Stiff, brown, very moist, mostly lean clay, trace silt, trace fine sand		5	2						ELEVATION (ft)		MATERI	IAL DESCRIPTION		GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE RQD	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf) LL/PI	B ADDITIONAL DATA/ REMARKS
	(and also (Cl.)			U 3			1.3	28.7	90.1	1550	1	UVIUM sand (SM)				20	ō	CL					
	Lean clay (CL) Stiff, brown, very moist, mostly lean clay, trace silt, trace fine sand			υ								lium dense, brov	wn, moist, mostly f	îne sand,									
1560			10	4							Med ∑ med	sand (SM) lium dense, brov lium sand, trace	wn, wet, mostly fine coarse sand	e to		25	ss 7		9-8-11 N=19				
	<u>12.0</u>													2	B.O'								
1555	Lean clay (CL) Firm, brown, very moist, mostly lean clay		15	U 5				26.2	95.0	 1540	Med	rly graded sand ium dense, light to coarse sand	(SP) ! yellowish grey, we	et, mostly		30	ss 8		7-9-7 N=16		15.1		P-200 = 1.3%
	17.0' Silty lean clay (CL/ML) Stiff, brown, very moist, mostly silty lean clay, trace fine sand 19.0'																						
	ALLUVIUM	2000	20	U 6				18.4	102.2		Med	ly graded sand (ium dense, light	(SP) yellowish grey, we	et, mostly			ss 9		6-9-12 N=21				
	CONTINUED NEXT PAGE								-	1535	SHA	to coarse sañd LE		3		35							
												lay (CH) I, grey, wet, mos	stly fat clay			40	SS 10		17-25-40 N=65				

2 55 10 6 24.8 9 Site Datum: Train Trac
very SC 0 1 AS 25.2
very SC 0 1 AS 25.2
very SC 0 1 AS 25.2
rrace CL 3 SS 8 2 21.3 1500* Drilling Method: HSA
95.2 DESCR
Acce CL 4 ST 16 20.2 106 6500* becomes very sti
10 5 SS 18 9 21.2 5000*
brown
6 ST 15 20.2 106 5500* becomes hard af
7 SS 12 12 20 6000*
ler 16'
8 SS 18 13 18.1 2000*
trace ¥CL 9 SS 18 20 16.4 9000*
- becomes very sti
10 SS 14 24 19.4 9000*
11 SS 14 36 18.8 9000*

EXAMPLE ACIP Pile in **Clay Till** 16-in Diameter, 55-ft Deep

				SA	MPLE	s			TESTS	
ox. Surface Elevation (ft): 101.2 Datum: Train Tracks (100.0') ng Method: HSA DESCRIPTION	USCS SYMBOL	DEPTH (ft.)	NUMBER	түре	RECOVERY	SPT - N (BLOWS / FT.)	MOISTURE, %	DRY DENSITY (PCF)	UNCONFINED STRENGTH (PSF)	OTHER
		35 -		Ħ						
becomes very stiff after 37'		-								
		40 -	13	ss	18	22	21.6		5500*	
becomes hard after 42'		-								
		45 -	14	ss	18	23	19.5		9000*	
		50 -	15	ss	16	22	21		9000*	
becomes very stiff after 52'										
		55 -	16	ss	18	17	18.3		5000*	
		-								
		60 -	17	ss	18	16	18.5		5000*	
		-								
		65 -	18	SS	18	16	19.1		5500*	
		-								
			19	ss	18	17	17.7		5500*	


	Top of	Bottom of	Soil	For	clays:				Unit Shaft
101	Layer	Layer	Туре	Su (psf)	α	N*c	Nfield	ER	Resist [tsf]
100.0	0	1	Clay	347	1.3	5	2	1.3	0.2
99.0	1	2	Clay	347	1.3	6.5	2	1.3	0.2
98.0	2	3	Clay	347	1.3	6.5	2	1.3	0.2
97.0	3	4	Clay	347	1.3	6.5	2	1.3	0.2
96.0	4	5	Clay	347	1.3	6.5	2	1.3	0.3
95.0	5	6	Clay	347	1.3	6.5	2	1.3	0.3
94.0	6	7	Clay	1560	0.72	8.7	9	1.3	0.7
93.0	7	8	Clay	1560	0.72	8.7	9	1.3	0.7
92.0	8	9	Clay	1560	0.72	8.7	9	1.3	0.7
	9	10			0.72		9	1.3	0.7
91.0			Clay	1560		8.7			
90.0	10	11	Clay	1560	0.72	8.7	9	1.3	0.7
89.0	11	12	Clay	1733	0.65	8.7	10	1.3	0.7
88.0	12	13	Clay	1733	0.65	8.7	10	1.3	0.7
87.0	13	14	Clay	1907	0.59	8.7	11	1.3	0.7
86.0	14	15	Clay	2080	0.54	8.9	12	1.3	0.7
85.0	15	16	Clay	2080	0.54	8.9	12	1.3	0.7
84.0	16	17	Clay	2080	0.54	8.9	12	1.3	0.7
83.0	17	18	Clay	2080	0.54	8.9	12	1.3	0.7
82.0	18	19	Clay	3467	0.45	8.9	20	1.3	0.9
81.0	19	20	Clay	3467	0.45	8.9	20	1.3	0.9
80.0	20	21	Clay	3467	0.45	8.9	20	1.3	0.9
79.0	20	22	Clay	3640	0.45	8.9	20	1.3	1.0
78.0	22	23	Clay	3813	0.45	8.9	22	1.3	1.0
77.0	23	24	Clay	3987	0.45	8.9	23	1.3	1.1
76.0	24	25	Clay	4160	0.45	9	24	1.3	1.1
75.0	25	26	Clay	4507	0.45	9	26	1.3	1.2
74.0	26	27	Clay	4853	0.45	9	28	1.3	1.3
73.0	27	28	Clay	5200	0.45	9	30	1.3	1.4
72.0	28	29	Clay	5720	0.45	9	33	1.3	1.5
71.0	29	30	Clay	6240	0.45	9	36	1.3	1.5
70.0	30	31	Clay	6067	0.45	9	35	1.3	1.5
69.0	31	32	Clay	5893	0.45	9	34	1.3	1.5
						9			
68.0	32	33	Clay	5720	0.45		33	1.3	1.5
67.0	33	34	Clay	5547	0.45	9	32	1.3	1.5
66.0	34	35	Clay	5373	0.45	9	31	1.3	1.5
65.0	35	36	Clay	5027	0.45	9	29	1.3	1.4
64.0	36	37	Clay	4680	0.45	9	27	1.3	1.3
63.0	37	38	Clay	4333	0.45	9	25	1.3	1.2
62.0	38	39	Clay	3987	0.45	8.9	23	1.3	1.1
61.0	39	40	Clay	3813	0.45	8.9	22	1.3	1.0
60.0	40	41	Clay	3813	0.45	8.9	22	1.3	1.0
59.0	41	42	Clay	3813	0.45	8.9	22	1.3	1.0
58.0	42	43	Clay	3813	0.45	8.9	22	1.3	1.0
57.0	43	43	Clay	3987	0.45	8.9	23	1.3	1.1
56.0	44	45	Clay	3987	0.45	8.9	23	1.3	1.1
55.0	45	46	Clay	3987	0.45	8.9	23	1.3	1.1
54.0	46	47	Clay	3987	0.45	8.9	23	1.3	1.1
53.0	47	48	Clay	3813	0.45	8.9	22	1.3	1.0
52.0	48	49	Clay	3813	0.45	8.9	22	1.3	1.0
51.0	49	50	Clay	3813	0.45	8.9	22	1.3	1.0
50.0	50	51	Clay	3640	0.45	8.9	21	1.3	1.0
49.0	51	52	Clay	3467	0.45	8.9	20	1.3	0.9
48.0	52	53	Clay	3293	0.45	8.9	19	1.3	0.9
47.0	53	54	Clay	3120	0.45	8.9	18	1.3	0.8
46.0	54	55	Clay	2947	0.45	8.9	17	1.3	0.8
45.0	55	56	Clay	2947	0.45	8.9	17	1.3	0.8
45.0	56	57	Clay	2947	0.45	8.9	17	1.3	0.8
43.0	57	58	Clay	2773	0.45	8.9	16	1.3	0.7
42.0	58	59	Clay	2773	0.45	8.9	16	1.3	0.7
41.0	59	60	Clay	2773	0.45	8.9	16	1.3	0.7
40.0	60	61	Clay	2773	0.45	8.9	16	1.3	0.7
39.0	61	62	Clay	2773	0.45	8.9	16	1.3	0.7
38.0	62	63	Clay	2773	0.45	8.9	16	1.3	0.7
37.0	63	64	Clay	2773	0.45	8.9	16	1.3	0.7
36.0	64	65	Clay	2773	0.45	8.9	16	1.3	0.7
35.0	65	66			0.45	8.9	16	1.3	0.7
			Clay	2773					
34.0	66	67	Clay	2773	0.45	8.9	16	1.3	0.7
33.0	67	68	Clay	2773	0.45	8.9	16	1.3	0.7
32.0	68	69	Clay	2947	0.45	8.9	17	1.3	0.8
31.0	69	70	Clay	2947	0.45	8.9	17	1.3	0.8


EXAMPLE Estimated Nominal Shaft 16-in Diameter ACIP Pile

Coleman and Arcement alpha values

Increased estimated unit shaft by 20%

EXAMPLE ACIP Pile in Clay Till 16-in Diameter, 55-ft Deep

Q&A- Something on your mind?

