

ASCE Geo-Omaha 2024

Soil Corrosivity: What it is and what to do about it

Presented by:

Lucy Jaramillo, EIT, NACE CP2 & CIP1 Brien Clark, PE, NACE CP4

Prepared by: February 2024

FS

Marc E N Wegner, PE, NACE CP3

TODAY'S SPEAKERS

Lucy Jaramillo, EIT, NACE CP2

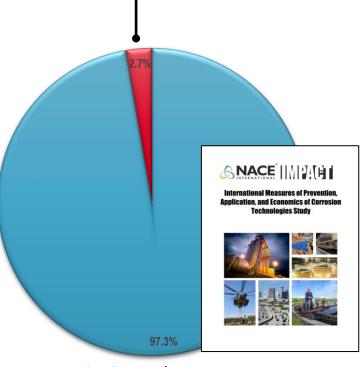
CORROSION FIELD SERVICES LEAD

Over 10 years of Corrosion Experience AMPP NACE Cathodic Protection Technician

Brien Clark, PE, NACE CP4

SENIOR CORROSION TECHNICAL PM

Over 20 years of Corrosion Experience Licensed Professional Engineer in CA, AZ, NM, ID, OR, HI AMPP NACE Cathodic Protection Specialist


SESSION OUTLINE

WHY DO WE CARE ABOUT CORROSION?

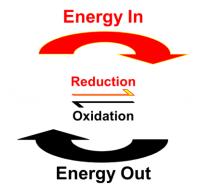
Direct Corrosion Costs \$451 billion (2.7% U.S. GDP [2013])

- Few care about corrosion and mitigation (rectifiers, anodes, test stations, resistivity, chlorides, sulfates, etc.), but....
- Everybody cares about \$\$\$
 - Direct Cost 2.7% of U.S GDP
 - Impact of corrosion on the U.S. economy:
 ~\$1,400 / yr per each person in the U.S.
 - \$451 billion does not include indirect costs

2013 U.S. GDP (\$16.7 trillion)

Pub. No. OAPUS310GKOCH (2016) more info: impact.nace.org

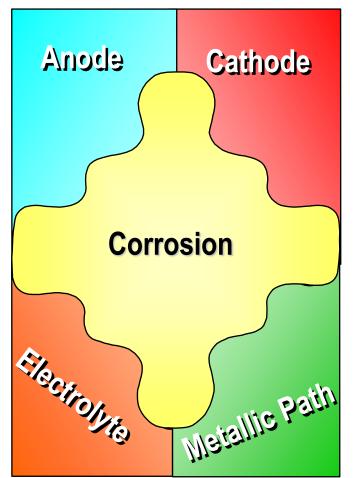
WHAT IS CORROSION?


Corrosion is the deterioration of a substance or its properties as a result of an undesirable reaction with the environment. - NACE International

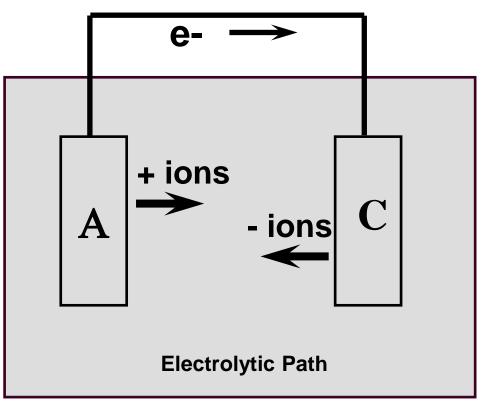
It is irreversible and degenerative and related to the Second Law of Thermodynamics

FOCUS ON METALLIC MATERIALS

- "Attack (chemical) of a material by reaction with the environment with deterioration of properties".
- Different from mechanical/physical attack (e.g. erosion, abrasion, fatigue), or resulting from internal transformations (e.g. phase changes).
- A natural process!

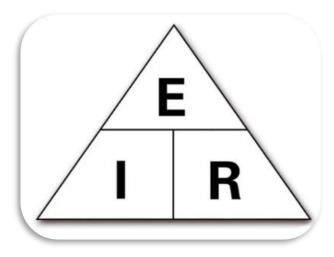


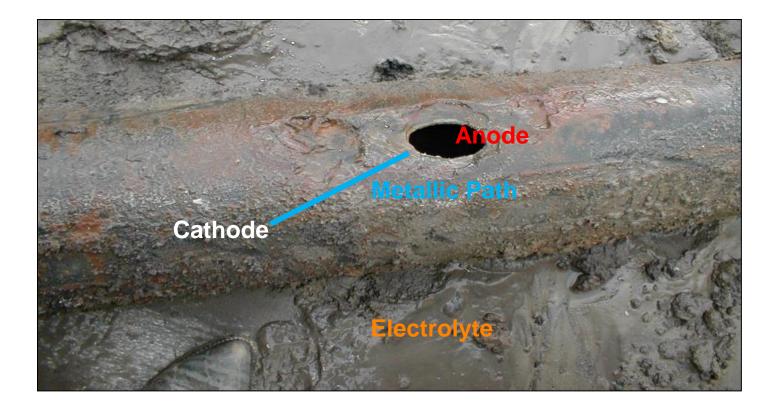
FOUR COMPONENTS NEEDED FOR CORROSION TO PROCEED


- Electrolyte
- Anodic reaction
- Cathodic reaction
- Electronic path

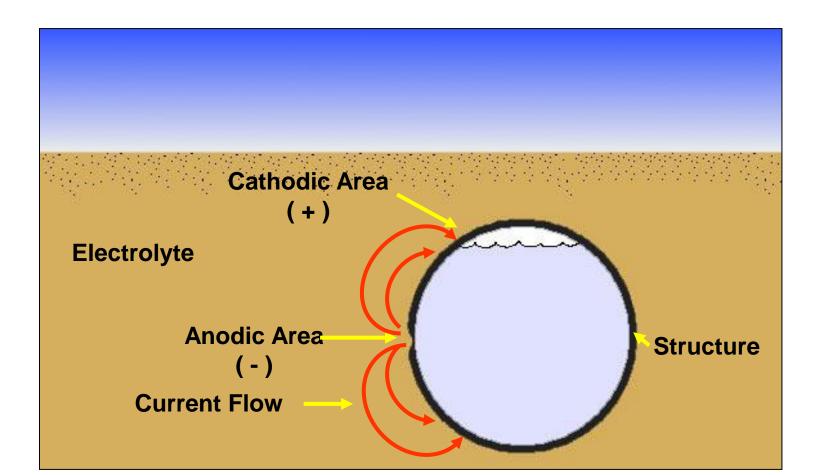
Corrosion can be stopped by controlling one or more of these components

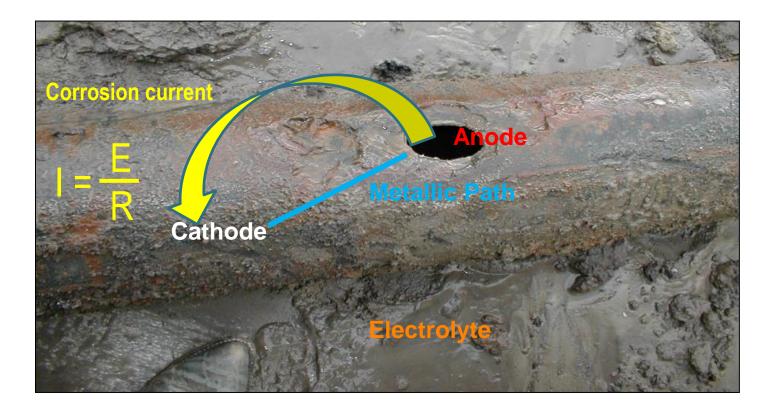
CORROSION CELL

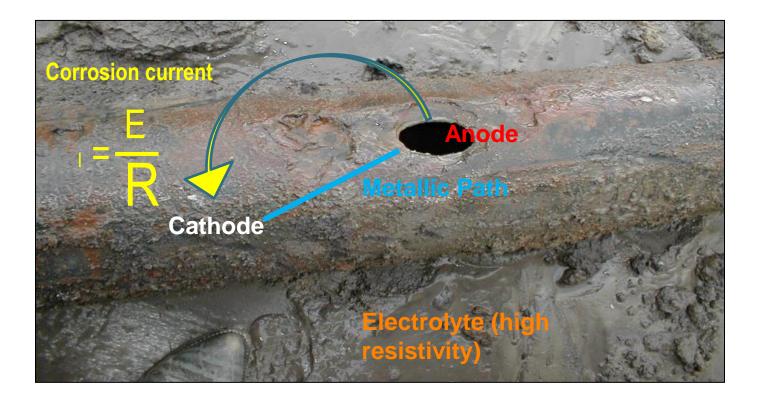

Metallic Path

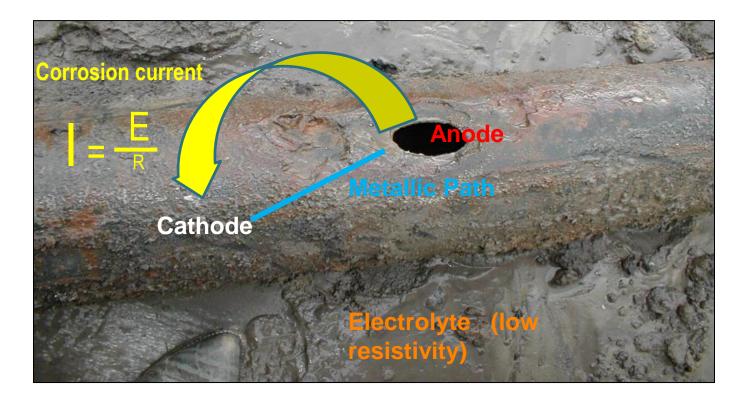


CORROSION IS AN ELECTROCHEMICAL PROCESS

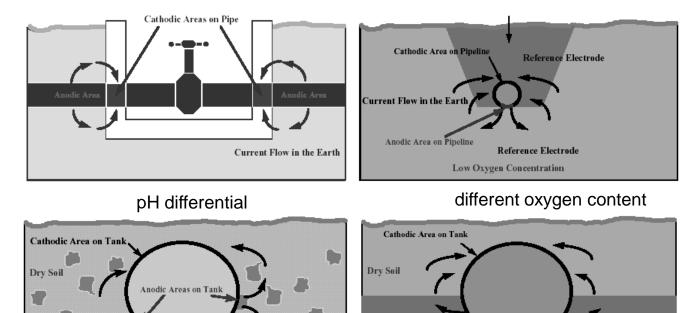

Ohm's Law:


E = IR





TYPICAL STEEL PIPELINE



CORROSION CELLS

nodic Area on Tank

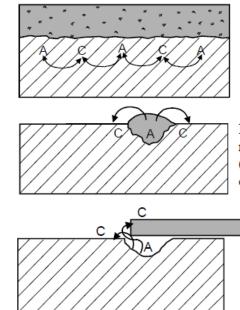
High Liquid Content

non-homogeneous soils

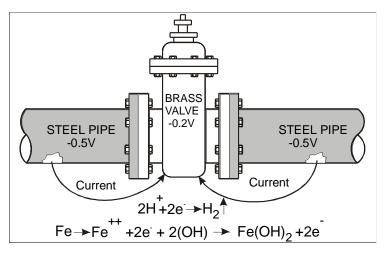
Current Flow in the Earth

Reference Electrode

groundwater table


Current Flow in the Earth

TYPICAL FORMS OF CORROSION


Uniform Corrosion – anodes and cathodes change locations resulting in general metal loss (e.g., atmospheric corrosion).

Pitting Corrosion – the anode site remains fixed and corrosion is localized (e.g., stainless steels in the presence of chlorides).

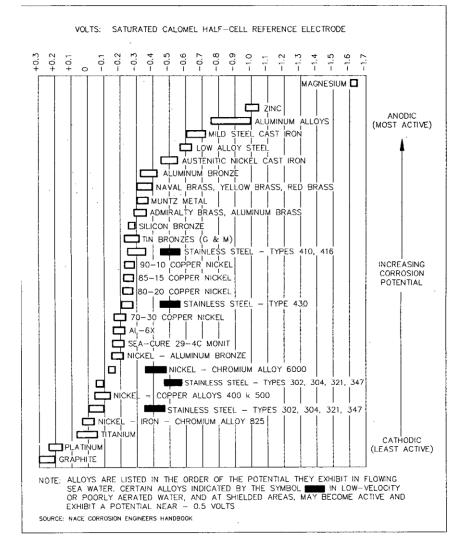
Crevice Corrosion – the surface area in the crevice is oxygen starved but the surrounding surfaces have access to dissolved oxygen (e.g., overlapping seams on surface storage tank floors).

TYPICAL FORMS OF CORROSION

Dissimilar Metal Corrosion

	copper service		
iron pipe	A	C 33	

Galvanic Corrosion – dissimilar metals are interconnected and exposed to a common environment (e.g., cast iron water main with copper services).


Anodic	Metal	Volts ^(a)	
	Commercially pure magnesium	-1.75	
Ť	Magnesium alloy (6% Al, 3% Zn, 0. 15% Mn)	-1.55 -1.15	
	Zinc		
	Aluminum alloy (5% zinc)	-1.05	
	Mild steel (clean and shiny)	-0.5 to -0.7	
	Mild steel (rusted)	-0.2 to -0.5	
	Cast iron (not graphitized)	-0.5	
	Dielectrically coated steel	-0.5	
	Lead	-0.5	
	Stainless steel, AISI 316	-0.25	
	Mild steel in concrete	-0.2	
	Copper, brass, bronze	-0.2	
	Cast iron - high silicon	-0.2	
¥	Mill scale on steel	-0.2	
Cathodic	Stainless steel, AISI 304	-0.15	

Note: (a) With respect to a copper-copper sulfate reference cell

GALVANIC SERIES

 $I = \frac{E}{R}$

#19

THE TENDENCY TO CORRODE

Directly Related to the Potential of the Material in the Environment

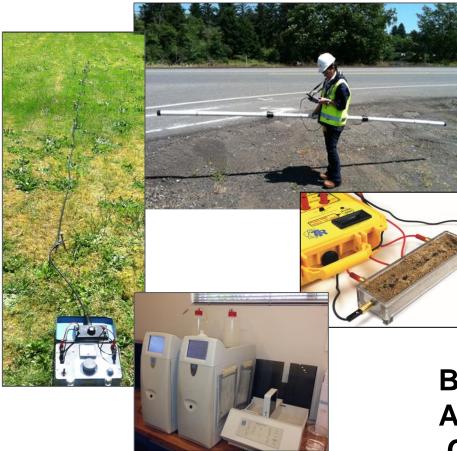

Metal	Potential (v) vs. CSE
Mg	-1.75
Zn	-1.1
Clean Mild Steel	-0.5 to -0.8
Rusty Mild Steel	-0.2 to -0.5
Cast or Ductile Iron	-0.5
Mild Steel in Concrete	-0.2
Copper	-0.2
Stainless Steel	-0.2
Graphite	+0.3

Table is for near neutral pH environment

AGGRESSIVE ENVIRONMENTS

Corrosive Soils:

- Expansive soils
- Acidic soils natural & otherwise
- Mine tailings
- Organic matter
- Beach sand
- Road salts



Corrosive Waters:

- High concentration of aggressive ions
- Splash zones
- Soft waters
- Low pH

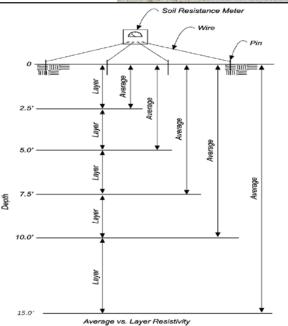
HOW TO MEASURE CORROSIVITY?

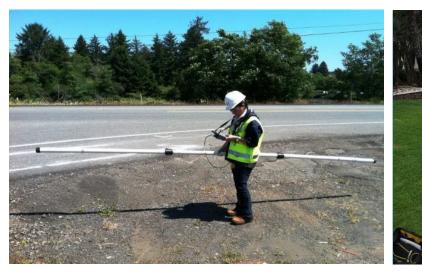
- Electrical Properties
 - In-situ: Wenner Four Pin or EM Conductivity
 - Laboratory: As-received/saturated or minimum resistivity
- Chemical Content
 - Laboratory
- Stray Current (topic for another day)
 - Desktop analysis
 - \circ In-situ testing

BOTH FIELD AND LAB DATA ARE NEEDED TO DETERMINE CORROSIVITY!

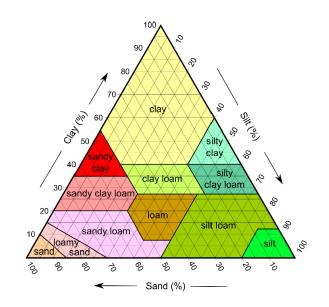
SOIL CORROSIVITY SURVEY

- Corrosive regions of alignment
- 3 survey methods
 - Electromagnetic Conductivity Survey
 - $_{\circ}$ Wenner 4-Pin Resistivity Survey
 - $_{\circ}~$ Laboratory Testing of Soil Samples




SOIL CORROSIVITY SURVEY

- Electromagnetic Conductivity (Emag) ASTM D6639
 - $_{\circ}$ Average conductivity of the subsurface to a depth of approximately 15 feet
- Wenner 4- Pin Resistivity ASTM G57
 - $_{\odot}\,$ Average resistivity to a depth equal to the spacing between the pins
 - $_{\odot}~$ Layer resistivity calculated using Barnes procedure


#24

SOIL SAMPLES ARE SELECTED BASED ON

- Soil corrosivity field data, if available
- Proposed structure and materials
- Previous site use(s)
- Site topography
- Proximity to Structure of Interest
- Geotechnical boring logs

Samples Should Give a Conservative View of Corrosivity!

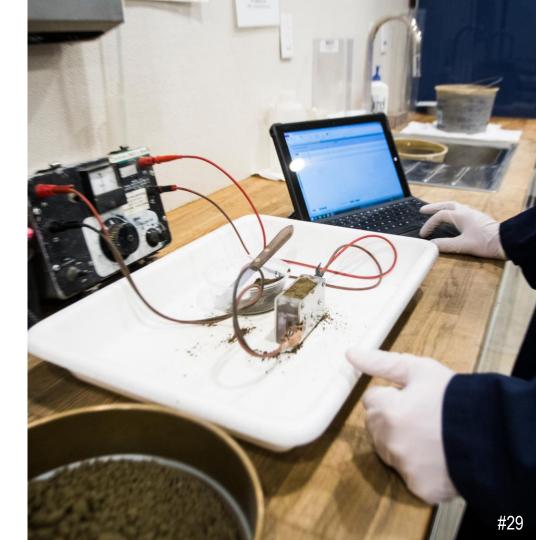
LABORATORY TESTING

- Soil resistivity
- Chemical content
- Soil pH

LABORATORY SOIL CORROSIVITY STANDARDS

- Not well standardized
- Some procedures, like soluble salt extraction, have no industry standard

Analysis	Hach	USEPA	AWWA	ASTM	CTM	Other
Soil Electrical Resistivity				G187	643	
pH				G51	643	
Total Acidity						NBS Circula 579 Romanof
Hardness (Ca or Mg)				D6919		
Sodium				D6919		
Conductivity	8160		2510B	D1125		
Carbonate and Bicarbonate Alkalinity	8221	310.1	2320-В	D513		
Qualitative Sulfide			C105 Appendix A			
Redox Potential			C105 Appendix A			
Chloride		300	4500-Cr C	D4327	422	
Sulfate		300	4500-SO ₄ ^{2-E}	D4327	417	
Ammonium				D6919		
Nitrate		300		D4327		


ELECTRICAL RESISTIVITY

- Traditional Indicator of
 Corrosivity
- Determining Factors
 - ✓ Soluble Salt Content
 - ✓ Solubilities
 - ✓ Moisture Content

RESISTIVITY RANGE

- >10,000 ohm-cm Mildly Corrosive
- 10,000 to 2,000
 Moderately Corrosive
- 2,000 to 1,000 Corrosive
- <1,000 Severely Corrosive</p>

рΗ

- Hydrogen ion concentration
- Indicator of intensity, not buffering capacity
- If less than 5.5, total acidity should be performed
- Elevated pH generally beneficial, but must be completely uniform. (caution with lime treatment)

TOTAL ACIDITY

- Provides more information on the resistance of the soil to changes in pH (buffering)
- If soil is not well-buffered, acidic soil is not necessarily aggressive to concrete

CATIONS

- Ca²⁺, Mg²⁺, Na¹⁺, K¹⁺, and NH₄⁺
- Provide QA/QC balance with anions
- Allow for inference of salts

ANIONS

- CO₃²⁻, HCO₃¹⁻, PO₄³⁻, NO₃¹⁻, F¹⁻, Cl¹⁻, and SO₄²⁻
- With cations comprise common soluble salts (QA/QC, resistivity)
- Cl¹⁻ and SO₄²⁻ are infamous players in various corrosion/degradation reactions.

CHLORIDE

- Threat to reinforced concrete when greater than 350 ppm
- Permeates concrete and overcomes corrosion inhibiting effects of high pH on reinforcing steel, pipe walls, pre-stressing wires, etc.

SULFATE

- Sulfate attacks concrete directly
- 1,000 mg/kg to 2,000 mg/kg = Moderate
- 2,000 mg/kg to 20,000 mg/kg = Severe
- >20,000 mg/kg = Very Severe

(Building Codes, ACI 318, ACI 350)

AMMONIUM AND NITRATE

- Prior-use dairy and agriculture
- Drives uniform corrosion of copper
 - Nitrate 50 mg/kg
 - Ammonium 10 mg/kg
 - Proportionally correlated to bicarbonate

(independent research)

 Not as well-documented in literature

QUALITATIVE SULFIDE AND REDOX POTENTIAL

- Qualitative Sulfide
 - Measure of biogenic sulfide
 - Positive, negative, or trace (AWWA C105 Appendix A)
- Oxidation-Reduction (Redox) Potential
 - Measure of aerated-to-anaerobic conditions for sulfate-reducing bacteria (SRB)
 - Above 100 mv Negligible
 - 50 to 100 mv Slight
 - 0 to 50 mv Moderate
 - Negative Severe
 - (AWWA C105 Appendix A)

SOIL CORROSIVITY IS MATERIAL DEPENDENT

- Ferrous (Iron, Steel)
- Cementitious
- Copper

STEEL CORROSION IS EXACERBATED UNDER THE FOLLOWING CONDITIONS:

- Moderately low soil resistivity (< 2,000 ohm-cm)
- pH <5.5
- Sulfides, Redox Potential, neutral pH (SRB)
- High groundwater

CAST AND DUCTILE IRON ARE SIMILAR TO STEEL

- AWWA C105: 10-point system tells you that additional corrosion measures should be taken:
 - Resistivity (<1,500 = 10 points now)
 - pH <4
 - Sulfides, Redox Potential, neutral pH (SRB)
 - Drainage

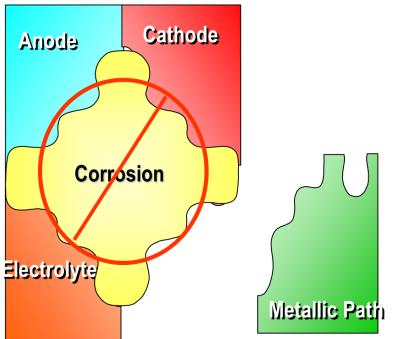
STEEL REINFORCED CONCRETE

- Severe and very severe sulfate concentrations
- pH <5.5 and high total acidity warrants concern of acid attack
- Chloride concentrations
 >350 ppm

STEEL REINFORCED CONCRETE SERVICE LIFE MODELING

Chloride diffusion

Alt name	D28		Ct		Prop.	Service life
20FA	1.23E-8 in*in/sec	0.36	1.97 lb/cub. yd.	23.8 yrs	6 yrs	29.8 yrs
20FA+2.5CNI	1.23E-8 in*in/sec	0.36	7.7 lb/cub. yd.	56.7 yrs	6 yrs	62.7 yrs
20FA+2.5CN+5SF	5.40E-9 in*in/sec	0.36	7.7 lb/cub. yd.	129.8 yrs	6 yrs	135.8 yrs
20FA+4CN+5SF	5.40E-9 in*in/sec	0.36	12.64 lb/cub. yd.	150+ yrs	6 yrs	156+ yrs
20FA+4CNI	1.23E-8 in*in/sec	0.36	12.64 lb/cub. yd.	96.8 yrs	6 yrs	102.8 yrs

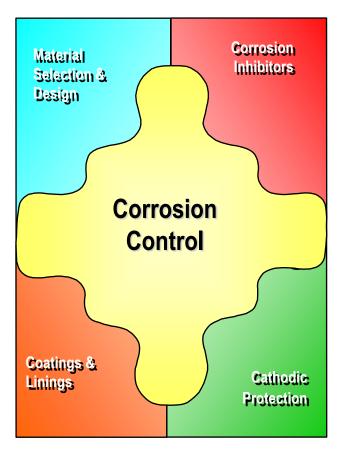

"->" indicates that the user has directly specified this value; "+" indicates the service life exceeds the study period.

COPPER PIPE

- Differential aeration
- Sulfate-reducing bacteria activity
- pH <5.5
- Ammonium and nitrates (animal waste, fertilizer)

CORROSION CONTROL TECHNIQUES

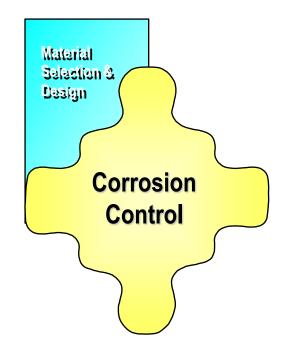
Electrochemical corrosion can be stopped by eliminating any one of the 4 components


FOUR BASIC METHODS OF CORROSION CONTROL

• Material Selection/Design Details

Corrosion Inhibitors

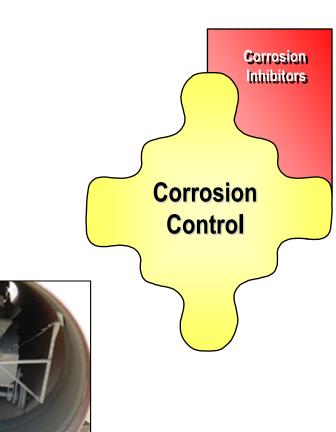
Coatings


Cathodic Protection

MA (2024)

CORROSION MITIGATION MATERIALS SELECTION & DESIGN

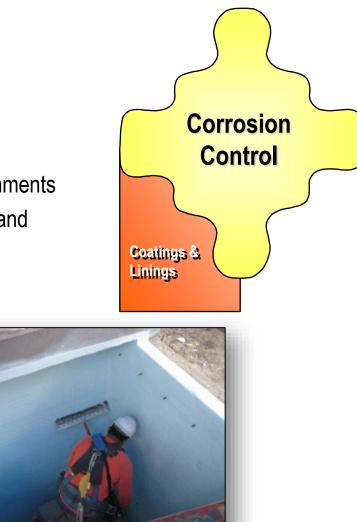
- Only Applicable for the design stage.
- Must characterize the environment (#1)
- Choose materials which are most compatible with the environment and cost constraints
- Do not create corrosion cells through design/construction details
- Increased use of PVC for distribution mains.
 Other problems may limit or make the decision
 Don't forget that the iron fittings will need corrosion control!


MA (2024)

CORROSION MITIGATION CORROSION INHIBITORS

- Alter the environment adjacent to the metal to passivate and protect the metal.
- Mortar/cement is the most common inhibitor for steel in the world.
- Admixtures can improve the resistance of encased steel, particularly to chloride

-Prior to Fabrication -Can be Low Cost


Uniform inhibitor distribution is critical

MA (2024)

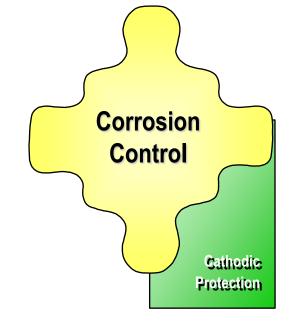
CORROSION MITIGATION PROTECTIVE COATINGS

- Barrier protection
- Best applied during initial construction
- Needs additional protection in aggressive environments
- Usually dielectric material that prevents electron and ionic current flow.
- Requires skilled applicators
- Quality control imperative

CORROSION MITIGATION CATHODIC PROTECTION

- Polarizes the structure surface using electrical current
- Applied during initial construction or to existing structures

-Must be metallic


-Best if installed with intentional electrical continuity

-Coatings or encasement reduce CP

• Basic Types of CP

-Galvanic

-Conventional Impressed Current

QUESTIONS

For additional information, please contact:

Brien Clark, PE Brien.Clark@hdrinc.com Lucy Jaramillo, EIT Lucy.Jaramillo@hdrinc.com

MA (2023)

