Pile Foundations in Intermediate Geomaterials

Kam Ng, P.E., Ph.D.

Provost's Term Professor Hoy Engineering Professor

Department of Civil and Architectural Engineering and Construction Management University of Wyoming Email: <u>kng1@uwyo.edu</u>

Presentation Outline

- Challenges
- What is IGM or Soft Rock?
- Historical Pile Load Test Data
- Field Pile Load Tests
- Geomaterials Classification for Driven Piles
- Proposed Static Analysis Methods
- Proposed Wave Equation Analysis Procedures
- Calibrated LRFD Resistance Factors
- Implementation

Challenges

What is Intermediate Geomaterial or Soft Rock?

Coarse-grained Soil-based IGM (SH-28 Lemhi River Bridge Project, Idaho)

Core samples indicate CG-IGM starting from 12.5 ft and terminated at 50 ft, overlaying the bedrock

Classification of Coarse-grained Soil IGM

Soft Siltstone (Lodgepole Creek Bridge Project, WY)

Summary of Pile Load Test Data

229 Usable Test Pile Types

213 Usable Test Piles into Known IGMs

Classification Chart for Soil-based Geomaterials

Classification Chart for Rock-based Geomaterials

Adhikari, P., Ng, K.W., Gebreslasie, Z.Y., Wulff, S.S. and Sullivan, T. (2020). "Geomaterial Classification Criteria for Driven Piles in IGM." *Canadian Geotechnical Journal*, 57(4), 616-621.

Determination of qusi

Ng, K.W., Adhikari, P., and Gebreslasie, Z.Y. (2019). Development of Load and Resistance Factor Design Procedures for Driven Piles on Soft Rocks in Wyoming. *Final Report WY1902F*, Wyoming Department of Transportation, Cheyenne, WY.

Determination of q_{usf} (G50 HP14 x 73 Steel Pile)

Ng, K.W., Adhikari, P., and Gebreslasie, Z.Y. (2019). Development of Load and Resistance Factor Design Procedures for Driven Piles on Soft Rocks in Wyoming. *Final Report WY1902F*, Wyoming Department of Transportation, Cheyenne, WY.

Classification Chart for Shales

Y Cla	Shale Field identification system Soil-based Shales (SS) 'es Is swelling in core box ? y Shales Silty Shales		Roc Decompo Slight oderate High	k based osition ↓ → SW → MW	Shales Cracks Hair I Visib	s ine le	
Shale type	Qualitative description	n	q _u (MPa)	E (MPa)	γ (kN/m³)	RQD (%)	q _s (MPa)
Soil-Based Shale (SS)	Clayey shale, silty shale, soft to hard	80	0.61±0.58	42±66	17.4±1.6	77±22	0.079±0.031
Highly Weathered Shale (HW)	Soft, highly weathered	42	0.44±0.37	24±30	16.2±1.3	70±21	0.028±0.013
Moderately Hard & Weathered Shale (MW)	Moderately hard, weathered, and moderately weathered	43	1.18±1.77	84±135	17.3±2.1	81±8	0.077±0.016
Hard & Slightly Weathered Shale (SW)	Hard, slightly weathered, and fresh	56	3.52±3.16	287±340	19.3±1.9	86±11	0.14±0.019

Islam, M.S., Ng, K.W., and Wulff, S.S. (2022). "Prediction of driven piles in shales considering weathering and time effects." *Canadian Geotechnical Journal*, 59(11), 1851-1871.

Test Pile Instrumentation and Protection

Static and Dynamic Pile Load Tests

Innovative Static Pile Load System

SLT Results (I-80 Rock Springs, WY)

Fine-grained Soil IGM: Low Plasticity Silt (ML-IGM) (Shaft Resistance)

Validation: Piles in Fine-grained Soil IGM

Fine-grained Soil-based IGM (End Bearing)

Validation: Piles in Fine-grained Soil IGM

Static Analysis Equations for FG-IGMs

Unit Resistance	Soil-based IGM	Proposed Static Equation	Applicable Range	Pile
q _s (ksf)	ML-IGM	$\hat{q}_{s} = \left[\frac{1.80}{1 + 44e^{-0.89\frac{S_{u}}{P_{a}}}}\right]P_{a}$	3.22 ksf≤ s_u ≤16.07 ksf 0.27 ksf≤ q_s ≤4.35 ksf	HP & OEP
q _s (ksf)	CL-IGM	$\hat{q}_s = \left[\frac{1.58}{1 + 47.6e^{-1.34\frac{S_u}{P_a}}}\right] P_a$	3.46 ksf≤s _u ≤15.31 ksf 0.17 ksf≤q _s ≤4.24 ksf	HP & OEP
q _s (ksf)	CH-IGM	$\hat{q}_{s} = \left[\frac{2}{1+50.4e^{-1.4\frac{S_{u}}{P_{a}}}}\right]P_{a}$	2.75 ksf≤s _u ≤15.94 ksf 0.28 ksf≤q _s ≤4.68 ksf	HP & OEP
q _b (ksf)	FG-IGM	$\hat{q}_b = \left[\frac{\frac{S_u}{P_a} \times \frac{D}{D_B}}{0.001 + 0.0027 \frac{S_u}{P_a} \times \frac{D}{D_B}}\right] P_a$	0.08 ksf-ft/ft $\leq s_u \frac{D}{D_B} \leq 0.89$ ksf-ft/ft 27.71 ksf $\leq q_s \leq$ 399.16 ksf	HP & OEP

 s_u =undrained shear strength (ksf); P_a =atmospheric pressure=2.12 ksf; D=pile dimension or diameter; D_B =total pile penetration; OEP=Open ended steel pipe pile.

Masud, N.B., Ng, K.W., Wulff, S.S., & Johnson, T., (2022). Driven piles in fine-grained soil-based intermediate geomaterials. *Journal for Bridge Engineering*, 27(6), 04022037.

LRFD Resistance Factors for Piles in FG-IGMs

	Ctot			Monte Carlo	Simulation			
FG-IGM	FG-IGM Statistical Parameters			β _T =2.33	β _T =3.0			
	N	Mean	COV	φ	φ			
	Unit Shaft Resistance							
ML-IGM	41	1.07	0.47	0.44	0.31			
CL-IGM	92	0.91	0.41	0.43	0.31			
CH-IGM	43	1.13	0.24	0.80	0.66			
	Unit End Bearing							
FG-IGM	27	1.07	0.36	0.57	0.43			

N-Sample size; φ -Resistance factor; β_T -Target reliability index; COV-Coefficient of variation.

Masud, N.B., Ng, K.W., Wulff, S.S., & Johnson, T., (2022). Driven piles in fine-grained soil-based intermediate geomaterials. *Journal for Bridge Engineering*, 27(6), 04022037.

Static Analysis Equations for Shales

Shale Type	Proposed Static Equation for $\overline{\mathbf{q}}_{s}$	Applicable Range	Pile
Soil-based (SS) Shale	$\hat{q}_s = \frac{3.523 \ q_u}{(8.6 + q_u)^{1.05}}$	2.18 ksf≤ q_u ≤51.5 ksf 0.76 ksf≤ q_s ≤2.68 ksf	HP & Shell
Soft & Highly Weathered (HW) Shale	$\hat{q}_s = 0.23 q_u^{0.45}$	2.18 ksf $\leq q_u \leq$ 25.6 ksf 0.18 ksf $\leq q_s \leq$ 1.06 ksf	HP & Shell
Moderately Hard & Weathered (MW) Shale	$\hat{q}_s = \frac{1.196 q_u}{(0.5 + q_u)^{0.83}}$	2.6 ksf $\leq q_u \leq$ 58 ksf 1.12 ksf $\leq q_s \leq$ 2.29 ksf	HP & Shell
Hard & Slightly Weathered (SW) Shale	$\hat{q}_s = \frac{2.62 \ q_u}{(0.467 + q_u)^{0.945}}$	4.54 ksf≤ q_u ≤126 ksf 2.24 ksf≤ q_s ≤3.78 ksf	HP & Shell
Shale Type	Proposed Static Equation for \overline{q}_p	Applicable Range	Pile
Soil-based Shale and Soft & Highly Weathered (SS-HW) Shale	$\hat{q}_b = 45.72 \ q_u^{0.35}$	3.61 ksf≤ q _u ≤51.5 ksf 39.7 ksf≤q _b ≤182.7 ksf	HP & Shell
Moderately Hard & Weathered Shale to Hard & Slightly Weathered (MW-SW) Shale	$\hat{q}_b = \frac{190.64 \ q_u}{(1+q_u)^{0.88}}$	5.4 ksf $\leq q_b \leq$ 124 ksf 35.1 ksf $\leq q_b \leq$ 384.5 ksf	HP & Shell

 q_u = uniaxial compressive strength in ksf

Islam, M.S., Ng, K.W., and Wulff, S.S. (2022). "Prediction of driven piles in shales considering weathering and time effects." *Canadian Geotechnical Journal*, 59(11), 1851-1871.

LRFD Resistance Factors for Piles in Shales

	Stat	otion Daramat		Monte Carlo	Simulation			
Shale Type	Statistical Parameters			β _T =2.33	β _T =3.0			
	N	Mean	COV	φ	φ			
	Unit Shaft Resistance							
SS	27	1.01	0.33	0.57	0.44			
HW	23	0.97	0.38	0.49	0.37			
MW	31	1.02	0.23	0.74	0.61			
SW	34	1.06	0.32	0.62	0.49			
	Unit End Bearing							
SS-HW	28	0.98	0.32	0.57	0.45			
MW-SW	36	1.02	0.29	0.64	0.51			

N-Sample size; φ -Resistance factor; β_T -Target reliability index; COV-Coefficient of variation.

Islam, M.S., Ng, K.W., and Wulff, S.S. (2022). "Prediction of driven piles in shales considering weathering and time effects." *Canadian Geotechnical Journal*, 59(11), 1851-1871.

Static Analysis Equations for Rock-based IGMs

Rock-based IGM	Proposed Static Equation for \overline{q}_s	Applicable Range	Pile
Siltetono	$\hat{q}_s = 0.45 q_u^{0.44}$	7.34 ksf $\leq q_u \leq$ 67.7 ksf 0.99 ksf $\leq q_s \leq$ 3.24 ksf	HP & OEP
Silisione	$\hat{q}_s = 0.42 P_a \left[\frac{(N_1)_{60}}{16} \right]^{0.63}$	16 b/ft≤ $(N_1)_{60}$ ≤151 b/ft 0.89 ksf≤ q_s ≤3.90 ksf	HP & OEP
Claystone	$\widehat{q_s} = 0.74 q_u^{0.305}$	1.46 ksf $\leq q_u \leq$ 163.1 ksf 0.42 ksf $\leq q_s \leq$ 3.55 ksf	HP & OEP
Mudstone	$\hat{q}_{\rm s} = 6.19 \Big[1 - e^{\left(-0.052 \frac{N}{19} \times \sigma_{\nu}' \right)} \Big]$	19 b/ft $\leq N \leq$ 168 b/ft 0.19 ksf $\leq \sigma'_v \leq$ 8.1 ksf 0.19 ksf $\leq q_s \leq$ 5.2 ksf	HP & OEP
Sandstone	$\widehat{q_s} = 0.56 q_u^{0.37}$	1.25 ksf $\leq q_u \leq$ 459 ksf 0.42 ksf $\leq q_s \leq$ 5.01 ksf	HP & OEP

Masud, N., Ng, K.W., Kalauni, H., and Wulff, S.S. (2023). "Reliability-based design improvement and prediction of steel driven pile resistances in rock-based intermediate geomaterials." *Acta Geotechnica*. https://doi.org/10.1007/s11440-023-01909-1

Static Analysis Equations for Rock-based IGMs

Rock-based IGM	Proposed Static Equation for \overline{q}_p	Applicable Range	Pile
Siltstone	$\hat{q}_b = 12.9 P_a \left[2.43^{\left(\frac{32.4 N}{30 D_B}\right)} \right]$	2.13 b/ft ² $\leq N/D_B \leq$ 11.13 b/ft ²	HP & OEP
Claystone	$\hat{q}_b = \frac{313.27q_u}{20.96 + q_u}$	3.55 ksf $\leq q_u \leq$ 109.65 ksf 44.7 ksf $\leq q_b \leq$ 264.4 ksf	HP & OEP
Sandstone	$\widehat{N_t} = 0.907\phi^2 - 71.399\phi + 1428.55$ $\widehat{q}_b = \widehat{N_t}\sigma'_v$	$\begin{array}{l} 37 \ \mathrm{deg.} \leq \phi \leq \!$	HP

Masud, N., Ng, K.W., Kalauni, H., and Wulff, S.S. (2023). "Reliability-based design improvement and prediction of steel driven pile resistances in rock-based intermediate geomaterials." *Acta Geotechnica*. https://doi.org/10.1007/s11440-023-01909-1

LRFD Resistance Factors for Piles in Rock-based IGMs

				Мо			
Pile Type	Rock-Based IGM	N	Mean	COV	β _T =2.33	β _T =3.0	
					φ	φ	
	Unit	Shaft F	Resistance				
H & Pipe Pile	Siltstone: qu	29	1.02	0.31	0.61	0.48	
H & Pipe Pile	Siltstone: (N ₁) ₆₀	48	1.04	0.33	0.60	0.46	
H & Pipe Pile	Claystone	12	1.09	0.45	0.47	0.34	
H & Pipe Pile	Mudstone	24	0.97	0.44	0.43	0.31	
H-Pile	Sandstone	17	1.03	0.45	0.44	0.31	
Unit End Bearing							
H & Pipe Pile	Siltstone	20	1.03	0.47	0.42	0.31	
H & Pipe Pile	Claystone	9	0.99	0.44	0.43	0.31	
H-Pile	Sandstone	18	1.17	0.41	0.55	0.41	

N-Sample size; φ -Resistance factor; β_T -Target reliability index; COV-Coefficient of variation.

Masud, N., Ng, K.W., Kalauni, H., and Wulff, S.S. (2023). "Reliability-based design improvement and prediction of steel driven pile resistances in rock-based intermediate geomaterials." *Acta Geotechnica*. https://doi.org/10.1007/s11440-023-01909-1

Setup/Relaxation of Unit Shaft Resistance in Shale

Setup/Relaxation of Unit Shaft Resistance in Shale

Setup/Relaxation of Unit End Bearing in Shale

Subsurface Conditions I to V for WEAP Procedure

- Islam, M.S., Ng, K.W., and Wulff, S.S. (2022). "Improved Wave Equation Analysis of Steel H-Piles in Shales Considering LRFD and Economic Impact Studies." *Journal of Bridge Engineering*, 27(6), 04022039.
- Kalauni, H.K. (2021). New static analysis methods and improved wave equation analysis program for driven piles in intermediate geomaterials with load and resistance factor design recommendations. MS thesis, University of Wyoming, Laramie, WY.

LRFD Resistance Factors for WEAP Methods (Rock-based IGMs)

				FOSM				
Method	N	Mean	cov	2.33		3.00		
				φ	φ/ x̄	φ	φ/ x	
WEAP-SA-D	119	1.15	0.25	0.72	0.62	0.58	0.50	
WEAP-UW-D	119	1.16	0.26	0.73	0.63	0.6	0.52	
WEAP-UW-R	119	1.03	0.20	0.71	0.70	0.59	0.58	
WEAP-SA-R	119	1.02	0.21	0.69	0.70	0.58	0.59	

N-Sample size; φ -Resistance factor; β_T -Target reliability index; COV-Coefficient of variation; φ/\overline{x} -Efficiency factor; FOSM-First Order Second Moment; FORM-First Order Reliability Method; MCS-Monte Carlo Simulation.

Recommended Driven Pile Design and Construction Control Process

Research Team

Journal Publications (2019-2023)

- 1) Masud, N., Ng, K.W., Kalauni, H., and Wulff, S.S. (2023). "Reliability-based design improvement and prediction of driven piles in rock-based intermediate geomaterials." *Acta Geotechnica*. (In press).
- 2) Masud, N., Ng, K.W., and Wulff, S.S. (2023). "Resistance responses and design recommendations for driven piles in coarse-grained soil-based Intermediate GeoMaterials." *Soils and Foundations*, 63(6), 101381.
- 3) Masud, N., Ng, K.W., Oluwatuyi, O., Islam, Md Shafiqul, Kalauni, H.K. and Wulff, S.S. (2023). "Evaluation of static load test systems for driven piles in intermediate geomaterials." *Transportation Research Record Journal*, 2677(10), 741-756.
- 4) Oluwatuyi, O. E., Ng, K.W., Wulff, S.S. (2023). "Improved resistance prediction and reliability for bridge pile foundation in Shales through optimal site investigation plans." *Reliability Engineering and System Safety*, 239, 109476.
- 5) Oluwatuyi, O., Ng, K.W., Wulff, S.S., and Rajapakshage, R. (2023). "Optimal site investigation through combined geological and property uncertainties analysis". *Geotechnical and Geological Engineering*, 41, 2377-2393.
- 6) Oluwatuyi, O., Ng, K.W., Wulff, S.S. and Masud, N. (2023). "The effect of geological uncertainty on the shaft resistance prediction and reliability of piles driven in multi-layered geomaterials." *Transportation Research Record Journal*, 2677(6), 687-696.
- 7) Oluwatuyi, O., Rajapakshage, R., Wulff, S.S., and Ng, K.W. (2023). "Proposed hybrid approach for three-dimensional subsurface simulation to improve boundary determination and design of optimum site investigation plan for pile foundations." *Soils and Foundations*, 63(1), 101269-1-16.
- 8) Islam, M.S., Ng, K.W., and Wulff, S.S. (2022). "Prediction of driven piles in shales considering weathering and time effects." *Canadian Geotechnical Journal*, 59(11), 1851-1871.
- 9) Adhikari, P., Ng, K.W., Gebreslasie, Z.Y., and Wulff, S.S. (2022). "New static analysis methods and LRFD recommendations for steel H-piles in rock-based intermediate geomaterials." *Geotechnical and Geological Engineering*, 40, 2553-2567.
- 10) Oluwatuyi, O., Holt, R., Rajapakshage, R., Wulff, S.S., and Ng, K.W. (2022). "Inherent Variability Assessment from Sparse Property Data of Overburden Soils and Intermediate Geomaterials Using Random Field Approaches". *GeoRisk: Assessment and Management of Risk for Engineered Systems and Geohazards*, 16(4), 766-781.
- 11) Islam, M.S., Ng, K.W., and Wulff, S.S. (2022). "Improved Wave Equation Analysis of Steel H-Piles in Shales Considering LRFD and Economic Impact Studies." *Journal of Bridge Engineering*, 27(6), 04022039-1-13.
- 12) Masud, N., Ng, K.W., Johnson, T., and Wulff, S.S. (2022). "Driven Piles in fine-grained soil-based Intermediate GeoMaterials." *Journal of Bridge Engineering*, 27(6), 04022037-1-13.
- 13) Adhikari, P., Gebreslasie, Z.Y., Ng, K.W., and Wulff, S.S. (2020). "Static and Economic Analyses of Driven H-Piles in IGM using the Wyopile Database." *Journal of Bridge Engineering*, ASCE, 25(5), 04020016.
- 14) Adhikari, P., Ng, K.W., Gebreslasie, Z.Y., Wulff, S.S. and Sullivan, T. (2020). "Geomaterial Classification Criteria for Design and Construction of Driven Steel H-Piles." *Canadian Geotechnical Journal*, 57(4), 616-621.
- 15) Adhikari, P., Gebreslasie, Z.Y., Ng, K.W. and Wulff, S.S. (2019). "Performance Assessment of Wave Equation Analysis for Driven Steel H-Piles in IGM." *Deep Foundation Institute Journal*, 13(1), 3-10.

Acknowledgements (Pooled Fund 5-391)

Example (Replacement of Memorial Bridge, ND)

Subsurface Profile

Geo- material	Depth (ft)	N	s _u (ksf)	Description
Sand	35.5	5		Soil
Clay	15	23	5.8	
Clay	15	46	9.6	Fine-grained soil -
Clay	5	34	7.7	Dased IGM
Sand	7	78		Coarse-grained soil-
Sand	19.5	84		based IGM

Hammer & Pile information

- Hammer: Delmag D 36
- Pile: HP14×102
- Pile Length: 125 ft
- Embedded Length: 97 ft

Default WEAP Method – Drivability Analysis

Step 1: Drivability Analysis using the SA input procedure

Select Hammer	X Analysis Type	
ID: 16 Name: DELMAG D 36 List of Hammers Type: ALL Image: Constraint of the state of	Bearing Graph Proportional Shaft Resistance/End Bearing Constant Shaft Resistance Constant End Bearing Inspector's Chart Driveability	
< Back Next > Finish Cancel	Help <a>K <a>K<td>FinishCancelHelp</td>	FinishCancelHelp

Selection of Hammer

Analysis Selection

Default WEAP Method – Drivability Analysis

Step 1: Drivability Analysis using the SA input procedure

Pile Input	×	Hammer Cush	iion		×
Pile material Pile T [^] Concrete [^] Steel [^] Timber Pile [^] Steel [^] Timber Penetration [^] 97.0 ft Section Area [^] 30.1 [^] Area Elast Modulus [^] 30457.9 [^] Ksi Spec Weight [^] 493.356 [^] bb/ft^3 Toe Area [^] 207.138 [^] 16 Perimeter [^] 4.79917 ft Pile Size [^] 14.785 in	ype: e 0.0 in^2 0.0 ksi 0.0 in 0.5 0.0 kips/in	Info. for Si ID: Name: Type: Ram Wt.: Energy/ Power: Press F3 for	elected Hammer 16 DELMAG D 36 OED 7.930 kips 83.820 kips-ft help on a selected parar	Hammer Cushion Area 227.0 in^2 Elastic Modulus 530.0 ksi Thickness 2.0 in C.O.R. 0.8 Stiffness 0.0 kips/in Helmet Weight 1.9 kips	
Press F3 for help on a selected parameter.	Finish Cancel Help		< Back	Next > Finish Cancel	Help

Pile Information Input

Hammer Cushion Input

Geomaterial Input – Drivability Analysis

Step 1: Drivability Analysis using the SA input procedure

Default WEAP – Bearing Graph Analysis

Step 2: Use the percent shaft resistance to run bearing graph analysis

Blow Count (bl/ft)

Bearing Graph Using Default WEAP Method

Proposed WEAP Method – Geomaterial input

Step 1: Drivability Analysis using the UW proposed static analysis methods

SA input form for geomaterial input

Proposed WEAP – Subsurface Condition

Step 2: Determine subsurface condition

Bearing Layers – Soil Based IGMs:

- I Overburden Soil + Fine Grained Soil based-IGMs
- II Overburden Soil + Coarse Grained Soil based-IGMs
- III Overburden Soil + Coarse Grained Soil based-IGMs + Fine Grained Soil based-IGMs

Subsurface Condition	Geomaterial	Q _s (in)	Q _t (in)	Shaft or Toe Damping (s/ft)
	Soil		D/60; Soft soils	0.05 (Coarse);
	3011	0.1	D/120; Hard soils	0.10 (Fine)
	Fine-Grained SB-IGM		D/120	0.18
	Coarse-grained SB- IGM		D/120	0.10

Bearing Graph – Soil/Pile Segment Input

Step 3: Assign new back-calculated quake and damping values

^{GNN} File	Edit View	Options	Tools	Window	elp	
Check Status		D ST SA CPT API 1 A D				
Pr <u>G</u> eneral Options						
	r Information	<u>P</u> ile P	aramete	irs 🔹 🕨	Pile Segment Option	
Select fro	Select from following list		Soil Parameters		<u>S</u> plices	
ID	Name	<u>H</u> amı	mer Para	meters	Additional Input	^
571	APE D 19-4	<u>O</u> ffsh	ore		Pile Profile Section Input	
572	APE D 30-4/	2	Ő	ED	Batter/Inclination	¥
					Static Soil Weight in Pile	
	r parameters —				Unimate Capacities (up to TO)	

Assign The Soil/Pile Segments

Pile Segment	Geomaterial	Depth (ft)	Description	
1	Above Ground	28	None	
2	Sand	35.5	Soil	
3	Clay	15		
4	Clay	15	Fine-grained soil -	
5	Clay	5	based IGM	
6	Sand	7	Coarse-grained soil-	
7	Sand	19.5	based IGM	

Number of Segm	ents 7	 Input Option Equal seg. length, automatic determination of stiffness and weight User defined seg. length, automatic determination of stiffness and weight User defined seg. length, stiffness and weight
Segment	Segment	
Number	Length	
1	28	
2	35.5	
3	15	
4 F	15	
6 6	2 7	
7	10.5	

Pile Segment Input Form

Bearing Graph – Shaft Damping Input

Step 3: Assign new back-calculated quake and damping values

😽 File Edit View 🤇	Options Tools Window	Help
	Check Status Job Information	D ST SA CPT API # A O English
earing Graph - prop. sh AC-H	General Options	
Re	Soil Parameters	Soil Segment Damping/Quake
General Information Pile Length: 125.0	Hammer Parameters Offshore	Extended Soil Model

Assign Shaft Damping to Pile Segments

Pile Segment	Geomaterial	Depth (ft)	Description	Damping (s/ft)
1	Above Ground	28	None	Any
2	Sand	35.5	Soil	0.05
3	Clay	15		0.18
4	Clay	15	Fine-grained	0.18
5	Clay	5	Soll -based IGM	0.18
6	Sand	7	Coarse-grained	0.10
7	Sand	19.5	soil-based IGM	0.10

lumber of Segm	ents 7		Input Option No individual soil segment input. Individual damping input for each segment.
Segment	Soil	^	Damaira
Number	Damping		0.00
	0.05		
2	0.05		
3	0.18		
1	0.18		3120
5	0.18		
i	0.10		
7	0.10		62.50
			93.75
		~	

Pile Segment Input Form

Bearing Graph – Quake/Damping Input

Step 3: Assign new back-calculated quake and damping values

Toe damping and toe quake are input on the main form

Soil Parameters 2nd Toe - No Quake	Subsurface Condition	Geomaterial	Q _s (in)	Q _t (in)	Shaft or Toe Damping (s/ft)
Toe 0.123 in		Soil		D/60 (Soft soils) D/120 (Hard soils)	0.05 (Coarse); 0.10 (Fine)
Damping	III	Fine-Grained SB-IGM	0.1	D/120	0.18
Shalt U142 s/ft Var. Toe 0.10 s/ft Smith		Coarse-grained SB-IGM		D/120	0.10

Alternative Method to Input Shaft Damping

Layer
$$J_i(s/ft)$$
 A_i $A_i \times J_i$ 10.056.070.3020.1830.755.5430.1845.458.1840.1816.252.9350.117.851.7960.140.564.06Sum =156.9322.79

$$V_s = \frac{22.79}{156.93}$$

= 0.145

51

Proposed WEAP - Bearing Graph Analysis

Step 4: Run bearing graph based on the new percent shaft resistance

Blow Count (bl/ft)

Bearing Graph Using Proposed WEAP

Default WEAP vs Proposed WEAP

Bearing Graph Comparison for Stoke Height = 8.5 ft and Hammer Blow Count = 49 bl/ft